1
|
Jabbari P, Kim JH, Le BH, Zhang W, Zhang H, Martins-Green M. Chronic Wound Initiation: Single-Cell RNAseq of Cutaneous Wound Tissue and Contributions of Oxidative Stress to Initiation of Chronicity. Antioxidants (Basel) 2025; 14:214. [PMID: 40002400 PMCID: PMC11852160 DOI: 10.3390/antiox14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic wounds (CWs) in humans affect millions of people in the US alone, cost billions of dollars, cause much suffering, and still there are no effective treatments. Patients seek medical care when wound chronicity is already established, making it impossible to investigate factors that initiate chronicity. In this study, we used a diabetic mouse model of CWs that mimics many aspects of chronicity in humans. We performed scRNAseq to compare the cell composition and function during the first 72 h post-injury and profiled 102,737 cells into clusters of all major cell types involved in healing. We found two types of fibroblasts. Fib 1 (pro-healing) was enriched in non-CWs (NCWs) whereas Fib 2 (non-healing) was in CWs. Both showed disrupted proliferation and migration, and extracellular matrix (ECM) deposition in CWs. We identified several subtypes of keratinocytes, all of which were more abundant in NCWs, except for Channel-related keratinocytes, and showed altered migration, apoptosis, and response to oxidative stress (OS) in CWs. Vascular and lymphatic endothelial cells were both less abundant in CWs and both had impaired migration affecting the development of endothelial and lymphatic microvessels. Study of immune cells showed that neutrophils and mast cells are less abundant in CWs and that NCWs contained more proinflammatory macrophages (M1) whereas CWs were enriched in anti-inflammatory macrophages (M2). Also, several genes involved in mitochondrial function were abnormally expressed in CWs, suggesting impaired mitochondrial function and/or higher OS. Heat shock proteins needed for response to OS were downregulated in CWs, potentially leading to higher cellular damage. In conclusion, the initiation of chronicity is multifactorial and involves various cell types and cellular functions, indicating that one type of treatment will not fix all problems, unless the root cause is fundamental to the cell and molecular mechanisms of healing. We propose that such a fundamental process is high OS and its association with wound infection/biofilm.
Collapse
Affiliation(s)
- Parnian Jabbari
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| | - Jane H. Kim
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| | - Brandon H. Le
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; (B.H.L.); (W.Z.)
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Wei Zhang
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; (B.H.L.); (W.Z.)
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Huimin Zhang
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| | - Manuela Martins-Green
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| |
Collapse
|
2
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Tan X, Wang S, Xiao GY, Wu C, Liu X, Zhou B, Jiang Y, Duose DY, Xi Y, Wang J, Gupta K, Pataer A, Roth JA, Kim MP, Chen F, Creighton CJ, Russell WK, Kurie JM. Chromosomal 3q amplicon encodes essential regulators of secretory vesicles that drive secretory addiction in cancer. J Clin Invest 2024; 134:e176355. [PMID: 38662435 PMCID: PMC11178546 DOI: 10.1172/jci176355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Cancer cells exhibit heightened secretory states that drive tumor progression. Here, we identified a chromosome 3q amplicon that serves as a platform for secretory regulation in cancer. The 3q amplicon encodes multiple Golgi-resident proteins, including the scaffold Golgi integral membrane protein 4 (GOLIM4) and the ion channel ATPase secretory pathway Ca2+ transporting 1 (ATP2C1). We show that GOLIM4 recruited ATP2C1 and Golgi phosphoprotein 3 (GOLPH3) to coordinate Ca2+-dependent cargo loading, Golgi membrane bending, and vesicle scission. GOLIM4 depletion disrupted the protein complex, resulting in a secretory blockade that inhibited the progression of 3q-amplified malignancies. In addition to its role as a scaffold, GOLIM4 maintained intracellular manganese (Mn) homeostasis by binding excess Mn in the Golgi lumen, which initiated the routing of Mn-bound GOLIM4 to lysosomes for degradation. We show that Mn treatment inhibited the progression of multiple types of 3q-amplified malignancies by degrading GOLIM4, resulting in a secretory blockade that interrupted prosurvival autocrine loops and attenuated prometastatic processes in the tumor microenvironment. As it potentially underlies the selective activity of Mn against 3q-amplified malignancies, ATP2C1 coamplification increased Mn influx into the Golgi lumen, resulting in a more rapid degradation of GOLIM4. These findings show that functional cooperativity between coamplified genes underlies heightened secretion and a targetable secretory addiction in 3q-amplified malignancies.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology
| | - Shike Wang
- Department of Thoracic/Head and Neck Medical Oncology
| | - Guan-Yu Xiao
- Department of Thoracic/Head and Neck Medical Oncology
| | - Chao Wu
- Department of Thoracic/Head and Neck Medical Oncology
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology
| | - Biyao Zhou
- Department of Thoracic/Head and Neck Medical Oncology
| | - Yu Jiang
- Department of Thoracic/Head and Neck Medical Oncology
| | | | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kunika Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery and
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery and
| | - Michael P. Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fengju Chen
- Department of Medicine and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Chad J. Creighton
- Department of Medicine and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | | |
Collapse
|
4
|
Xiao C, Gong J, Jie Y, Liang W, Tai Y, Qin W, Lu T, Chong Y, Hei Z, Hu B, Zhang Q. E2F1-mediated Up-regulation of NCAPG Promotes Hepatocellular Carcinoma Development by Inhibiting Pyroptosis. J Clin Transl Hepatol 2024; 12:25-35. [PMID: 38250463 PMCID: PMC10794265 DOI: 10.14218/jcth.2022.00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 01/23/2024] Open
Abstract
Background and Aims As a subunit of the condensin complex, NCAPG has an important role in maintaining chromosome condensation, but its biological function and regulatory mechanism in hepatocellular carcinoma (HCC) remains undefined. Methods The prognostic ability of NCAPG in HCC patients was examined by univariate and multivariate Cox regression analysis. ROC curves were plotted to compare the predictive ability of NCAPG and AFP. Double luciferase reporter system, and ChIP were used to investigate transcriptional potential of E2F1 to NCAPG. Pyroptosis was observed by scanning electron microscopy. Protein expression of NCAPG, E2F1, and major proteins constituting NLRP3 inflammasome was determined by western blotting and ELISA. An in vivo tumor formation assay was conducted to verify the in vitro results. Results Up-regulated NCAPG was identified in HCC tissues compared with adjacent tissue and high NCAPG was positively correlated with poor prognosis. Serum NCAPG mRNA level was a prognostic factor in HCC patients and also a diagnostic factor with higher predictive ability compared with AFP [AUROC 0.766 (95% CI: 0.650-0.881) vs. 0.649 (95% CI 0.506-0.793)]. HBx transfection resulted in concomitant up-regulation of E2F1 and NCAPG. E2F1 significantly increased the activity of luciferase reporter fused with NCAPG reporter, and the interaction of E2F1 and NCAPG gene was confirmed by ChIP. Silencing of E2F1 resulted in significant down-regulation of NCAPG. Knockdown of NCAPG promote pyroptosis mediated by NLRP3 inflammasome activation in multiple HCC cell lines and also suppressed tumorigenesis in vitro. Conclusions We identified a novel role of NCAPG in the regulation of NLRP3 inflammasome-mediated pyroptosis, which was regulated by its upstream transactivator, E2F1. The role of E2F1-NCAPG-NLRP3 regulation of pyroptosis network may be a potential target in HCC treatment.
Collapse
Affiliation(s)
- Cuicui Xiao
- Biotherapy Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yusheng Jie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weicheng Liang
- Biotherapy Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Tai
- Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Qin
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tongyu Lu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yutian Chong
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziqing Hei
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi Zhang
- Biotherapy Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Zhang G, Ji P, Xia P, Song H, Guo Z, Hu X, Guo Y, Yuan X, Song Y, Shen R, Wang D. Identification and targeting of cancer-associated fibroblast signature genes for prognosis and therapy in Cutaneous melanoma. Comput Biol Med 2023; 167:107597. [PMID: 37875042 DOI: 10.1016/j.compbiomed.2023.107597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play pivotal roles in tumor invasion and metastasis. However, studies on CAF biomarkers in Cutaneous Melanoma (CM) are still scarce. This study aimed to explore the potential CAF biomarkers in CM, propose the potential therapeutic targets, and provide new insights for targeted therapy of CAFs in CM. METHODS We utilized weighted gene co-expression network analysis to identify CAF signature genes in CM, and conducted comprehensive bioinformatics analysis on the CAF risk score established by these genes. Moreover, single-cell sequencing analysis, spatial transcriptome analysis, and cell experiments were utilized for verifying the expression and distribution pattern of signature genes. Furthermore, molecular docking was employed to screen potential target drugs. RESULTS FBLN1 and COL5A1, two crucial CAF signature genes, were screened to establish the CAF risk score. Subsequently, a comprehensive bioinformatic analysis of the CAF risk score revealed that high-risk score group was significantly enriched in pathways associated with tumor progression. Besides, CAF risk score was significantly negatively correlated with clinical prognosis, immunotherapy response, and tumor mutational burden in CM patients. In addition, FBLN1 and COL5A1 were further identified as CAF-specific biomarkers in CM by multi-omics analysis and experimental validation. Eventually, based on these two targets, Mifepristone and Dexamethasone were screened as potential anti-CAFs drugs. CONCLUSION The findings indicated that FBLN1 and COL5A1 were the CAF signature genes in CM, which were associated with the progression, treatment, and prognosis of CM. The comprehensive exploration of CAF signature genes is expected to provide new insight for clinical CM therapy.
Collapse
Affiliation(s)
- Guokun Zhang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Haoyun Song
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Zhao Guo
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Yanfeng Song
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu, 730000, China.
| |
Collapse
|
6
|
Sobhi Amjad Z, Shojaeian A, Sadri Nahand J, Bayat M, Taghizadieh M, Rostamian M, Babaei F, Moghoofei M. Oncoviruses: Induction of cancer development and metastasis by increasing anoikis resistance. Heliyon 2023; 9:e22598. [PMID: 38144298 PMCID: PMC10746446 DOI: 10.1016/j.heliyon.2023.e22598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The phenomenon of cell death is a vital aspect in the regulation of aberrant cells such as cancer cells. Anoikis is a kind of cell death that occurs when cells get separated from the extracellular matrix. Some cancer cells can inhibit anoikis in order to progress metastasis. One of the key variables that might be implicated in anoikis resistance (AR) is viral infections. The most important viruses involved in this process are Epstein-Barr virus, human papillomavirus, hepatitis B virus, human herpes virus 8, human T-cell lymphotropic virus type 1, and hepatitis C virus. A better understanding of how carcinogenic viruses suppress anoikis might be helpful in developing an effective treatment for virus-associated cancers. In the current study, we review the role of the mentioned viruses and their gene products in anoikis inhibition.
Collapse
Affiliation(s)
- Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mosayeb Rostamian
- Nosocomial Infections Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Babaei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Hu H, Liang L, Zheng X, Jiang X, Fu Z, Liu C, Long J. Fibulin-1: a novel biomarker for predicting disease activity of the thyroid-associated ophthalmopathy. Eye (Lond) 2023; 37:2216-2219. [PMID: 36418908 PMCID: PMC10366185 DOI: 10.1038/s41433-022-02318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/04/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE This study was designed to investigate the association between fibulin-1(FBLN1) and thyroid-associated ophthalmopathy (TAO). METHOD The plasma FBLN1 levels were measured in 80 participants, including 30 active TAO patients, 25 inactive TAO patients, and 25 Graves disease (GD) patients without TAO using enzyme-linked immunosorbent assay (ELISA). RESULTS TAO patients had significantly higher TRAb level than GD patients (p < 0.05). The active TAO patients consumed more tobacco and had higher CAS than inactive TAO patients (all p < 0.05). No significant differences were found in age, sex, and the level of FT3, FT4, and TSH between TAO and GD patients, and between the active and inactive TAO patients (all p > 0.05). The plasma FBLN1 level in TAO patients was higher than that in GD patients, and that in active patients was higher than that in inactive patients (all p < 0.05). Furthermore, the plasma FBLN1 level showed strong association with clinical activity score (CAS) of TAO (r = 0.67, p < 0.01). By receiver operator characteristic (ROC) curve analysis, FBLN1 demonstrated good efficiency for predicting disease activity at the cut-off value > 625.33 pg/ml with a sensitivity of 93.3% and a specificity of 88.0% (AUC:0.92, p < 0.01). CONCLUSION The plasma FBLN1 levels correlated with TAO activity and a value >625.33 pg/ml was associated with active disease. Our results suggest that the plasma FBLN1 level could be a novel biomarker for predicting disease activity of TAO.
Collapse
Affiliation(s)
- Hong Hu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Liang
- Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoya Zheng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jiang
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhizhen Fu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Liu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Long
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Hu X, Liu T, Li L, Gan H, Wang T, Pang P, Mao J. Fibulin-2 Facilitates Malignant Progression of Hepatocellular Carcinoma. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:635-644. [PMID: 37162505 PMCID: PMC10441129 DOI: 10.5152/tjg.2023.22134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/12/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Identification of biomarkers to assist in the clinical management of hepatocellular carcinoma represents an urgent requirement. Fibulin-2 is known to contribute to the development and progression of various cancer types. This research investigated the role of fibulin-2 in hepatocellular carcinoma and explored the possible mechanisms. METHODS The expression of fibulin-2 in hepatocellular carcinoma was measured by bioinformatic analysis and confirmed by western blot and immunohistochemical staining in cell lines or patients' samples. The clinicopathologic features of hepatocellular carcinoma patients was analyzed. Cell viability assays were used to explore the role of fibulin-2 on proliferation in hepatocellular carcinoma. Western blot was conducted to uncover changes of protein expression of Ras-MEK-ERK1/2 pathway when Fibulin-2 was overexpressed or silenced. Flow cytometry analyses were used to determine the roles of fibulin-2 in the function of apoptosis and cell cycle. Subcutaneous xenograft mouse models showed the tumor growth pattern after fibulin-2 silence in vivo. RESULTS We reported the upregulation of fibulin-2 in most hepatocellular carcinoma tissues and cells lines. Fibulin-2 promoted the proliferation of hepatocellular carcinoma cells in vitro by regulating Ras-MEK-ERK1/2 signaling pathway, whereas knockdown of fibulin-2 incurred the opposite effect on proliferation. Consistently, knockdown of fibulin-2 resulted in increased apoptosis and induced growth arrest during the G0/G1 phase transition. In vivo xenograft assessment confirmed that knockdown of fibulin-2 inhibited hepatocellular carcinoma tumor growth. CONCLUSIONS Fibulin-2 exhibited tumor promotor activities in malignant progression of hepatocellular carcinoma. The results of the study highlighted the potential of fibulin-2 to be utilized as a promising biomarker and therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xinyan Hu
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Tianze Liu
- The Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Luting Li
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Hairun Gan
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Tiancheng Wang
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Pengfei Pang
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Junjie Mao
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
9
|
Transcriptional landscape of oncogene-induced senescence: a machine learning-based meta-analytic approach. Ageing Res Rev 2023; 85:101849. [PMID: 36621646 DOI: 10.1016/j.arr.2023.101849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Oncogene-induced senescence (OIS) is highly heterogeneous, varying by oncogenic signals and cellular context. While its dual role, in the initial inhibition potentially later leading to promotion of tumors through the senescence-associated secretory phenotype, is still a matter of debate, it is undeniable that OIS is critical to understanding tumorigenesis. A major obstacle to OIS research is the absence of a universally accepted marker. Here, we present a robust OIS-specific transcriptomic secretory phenotype, termed oncogene-induced senescence secretory phenotype (OIS-SP), which can identify OIS across multiple biological contexts from in vitro datasets to in vivo human samples. We apply a meta-analytic machine learning pipeline to harmonize a deliberately varied selection of Ras-Raf-MEK-induced senescence datasets of differing origins, oncogenic signals and cell types. Finally we make use of bypass data to identify key genes and eliminate genes associated with quiescence, so identifying 40 OIS-SP genes. Within this set, we determined a robust core of five OIS-SP genes (FBLN1, CXCL12, EREG, CST1 and MMP10). Importantly, these 5 OIS-SP genes showed clear, consistent regulation patterns across various human Ras-Raf-MEK-mutated tumor tissues, which suggests that OIS-SP may be a novel cancer driver phenotype with an unexpectedly critical role in tumorigenesis.
Collapse
|
10
|
Jung JW, Li H, Lee JH, Hwang YJ, Dan K, Park MK, Han D, Suh MW. Dual viscosity mixture vehicle for intratympanic steroid treatment modifies the ROS and inflammation related proteomes. Front Pharmacol 2023; 14:1081724. [PMID: 36744248 PMCID: PMC9892634 DOI: 10.3389/fphar.2023.1081724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Until recently, the most standard treatment for sensorineural or sudden hearing loss, which is caused by inner ear damage or deterioration, has been systemic oral steroid administration. In recent, intratympanic steroid injections such as dexamethasone have been used for the treatment of sudden hearing loss as well. It is injected into the tympanic cavity through its membrane and is expected to diffuse over the round window located between the tympanic cavity and the inner ear. However, in clinical situations, the delivery time of steroids to the inner ear is shorter than 24 h, which does not allow for a sufficient therapeutic effect. Therefore, we applied a previously invented dual viscosity mixture vehicle (DVV) for intratympanic dexamethasone to a guinea pig model, which could reduce the side effects of systemic steroid administration with sufficient dwelling time for the treatment of hearing loss, and we investigated the physiological changes with a global proteomic approach. In this study, we extracted perilymph in three different conditions from guinea pigs treated with dexamethasone-embedded DVV, dexamethasone mixed in saline, and control groups to compare proteomic changes using tandem mass spectrometry analysis. After liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analysis, we first identified 46 differentially expressed proteins (DEPs) that were statistically significant after one-way ANOVA multiple-sample test. We also performed pairwise comparisons among each group to identify DEPs closely related to the treatment response of dexamethasone-embedded DVV. Gene ontology enrichment analysis showed that these DEPs were mostly related to inflammation, immune, actin remodeling, and antioxidant-related processes. As a result, the proteome changes in the DVV-treated groups revealed that most upregulated proteins activate the cell proliferation process, and downregulated proteins inhibit apoptosis and inflammatory reactions. Moreover, the reactive oxygen process was also regulated by DEPs after DVV treatment.
Collapse
Affiliation(s)
- Jin Woo Jung
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Hui Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Jung Hun Lee
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yu-Jung Hwang
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Kisoon Dan
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Dohyun Han
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea,Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Dohyun Han, ; Myung-Whan Suh,
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Dohyun Han, ; Myung-Whan Suh,
| |
Collapse
|
11
|
Naryzhny S, Ronzhina N, Zorina E, Kabachenko F, Klopov N, Zgoda V. Construction of 2DE Patterns of Plasma Proteins: Aspect of Potential Tumor Markers. Int J Mol Sci 2022; 23:ijms231911113. [PMID: 36232415 PMCID: PMC9569744 DOI: 10.3390/ijms231911113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tumor markers aids in the early detection of cancer recurrence and prognosis. There is a hope that they might also be useful in screening tests for the early detection of cancer. Here, the question of finding ideal tumor markers, which should be sensitive, specific, and reliable, is an acute issue. Human plasma is one of the most popular samples as it is commonly collected in the clinic and provides noninvasive, rapid analysis for any type of disease including cancer. Many efforts have been applied in searching for “ideal” tumor markers, digging very deep into plasma proteomes. The situation in this area can be improved in two ways—by attempting to find an ideal single tumor marker or by generating panels of different markers. In both cases, proteomics certainly plays a major role. There is a line of evidence that the most abundant, so-called “classical plasma proteins”, may be used to generate a tumor biomarker profile. To be comprehensive these profiles should have information not only about protein levels but also proteoform distribution for each protein. Initially, the profile of these proteins in norm should be generated. In our work, we collected bibliographic information about the connection of cancers with levels of “classical plasma proteins”. Additionally, we presented the proteoform profiles (2DE patterns) of these proteins in norm generated by two-dimensional electrophoresis with mass spectrometry and immunodetection. As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers will be generated. Additionally, based on this information, different test systems can be developed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
- Correspondence: ; Tel.: +7-911-176-4453
| | - Natalia Ronzhina
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Elena Zorina
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| | - Fedor Kabachenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Nikolay Klopov
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| |
Collapse
|
12
|
Tian H, Chu F, Li Y, Xu M, Li W, Li C. Synergistic effects of rare variants of ARHGAP31 and FBLN1 in vitro in terminal transverse limb defects. Front Genet 2022; 13:946854. [PMID: 36176297 PMCID: PMC9513373 DOI: 10.3389/fgene.2022.946854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLDs) are the most common features of Adams-Oliver syndrome (AOS). ARHGAP31 is one of the causative genes for autosomal dominant forms of AOS, meanwhile its variants may only cause isolated TTLD. Here, we report a proband presented with apparent TTLD but not ACC. Methods: Whole exome sequencing (WES) and Sanger sequencing were applied to identify causative genes. Expression vectors were constructed for transfections in mammalian cell cultures followed by biochemical and functional analysis including immunoblotting, immunofluorescence staining, and cell counting kit-8 assay. Results: WES and Sanger sequencing suggested that the proband inherited rare ARHGAP31 variant [c.2623G > A (p.Glu875Lys)] and a rare FBLN1 variant [c.1649G > A (p.Arg550His)] from one of her asymptomatic parents, respectively. Given FBLN1 variation has also been linked to syndactyly, we suspected that the two genes together contributed to the TTLD phenotype and explored their possible roles in vitro. Mutant FBLN1 showed reduced expression resulted from impaired protein stability, whereas ARHGAP31 protein expression was unaltered by mutation. Functional assays showed that only in the co-transfected group of two mutants cell viability was decreased, cell proliferation was impaired, and apoptosis was activated. Cdc42 activity was declined by both ARHGAP31 mutation and FBLN1 mutation alone, and the two together. Furthermore, the MAPK/ERK pathway was only activated by two mutants co-transfected group compared with two wild-type transfections. Conclusion: We report a case carrying two rare variants of limb defects associated genes, ARHGAP31 and FBLN1, and provide in vitro evidence that synergistic disruption of cellular functions attributed by the two mutants may potentiate the penetrance of clinical manifestations, expanding our knowledge of clinical complexity of causal gene interactions in TTLD and other genetic disorders.
Collapse
Affiliation(s)
- Hong Tian
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Tian, ; Chuanzhou Li,
| | - Fan Chu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjie Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Xu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjiao Li
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Tian, ; Chuanzhou Li,
| |
Collapse
|
13
|
Siino V, Ali A, Accardi G, Aiello A, Ligotti ME, Mosquim Junior S, Candore G, Caruso C, Levander F, Vasto S. Plasma proteome profiling of healthy individuals across the life span in a Sicilian cohort with long-lived individuals. Aging Cell 2022; 21:e13684. [PMID: 35932462 PMCID: PMC9470904 DOI: 10.1111/acel.13684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023] Open
Abstract
The study of healthy human aging is important for shedding light on the molecular mechanisms behind aging to promote well-being and to possibly predict and/or avoid the development of age-related disorders such as atherosclerosis and diabetes. Herein, we have employed an untargeted mass spectrometry-based approach to study age-related protein changes in a healthy Sicilian plasma cohort including long-lived individuals. This approach confirmed some of the previously known proteins correlated with age including fibulin-1, dystroglycan, and gamma-glutamyl hydrolase. Furthermore, our findings include novel proteins that correlate with age and/or with location and uric acid, which could represent a unique signature for healthy aging.
Collapse
Affiliation(s)
| | - Ashfaq Ali
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of ImmunotechnologyLund UniversityLundSweden
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Mattia E. Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | | | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Fredrik Levander
- Department of ImmunotechnologyLund UniversityLundSweden,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of ImmunotechnologyLund UniversityLundSweden
| | - Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of PalermoPalermoItaly,Euro‐Mediterranean Institutes of Science and Technology (IEMEST)PalermoItaly
| |
Collapse
|
14
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 493] [Impact Index Per Article: 164.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
15
|
Tsai YC, Hung WW, Chang WA, Wu PH, Wu LY, Lee SC, Kuo MC, Hsu YL. Autocrine Exosomal Fibulin-1 as a Target of MiR-1269b Induces Epithelial–Mesenchymal Transition in Proximal Tubule in Diabetic Nephropathy. Front Cell Dev Biol 2021; 9:789716. [PMID: 34977033 PMCID: PMC8718747 DOI: 10.3389/fcell.2021.789716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Diabetic nephropathy (DN) is an increasing threat to human health and is regarded to be the leading cause of end-stage renal disease worldwide. Exosomes deliver biomolecule massages and may play a key role in cell communication and the progression of DN. Methods: A cross-disciplinary study, including in vivo, in vitro, and human studies, was conducted to explore the cross-talk within proximal tubular epithelial cells (PTECs) in DN. Exosomal protein from PTECs treated with high glucose (HG) was purified and examined using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Next-generation sequencing (NGS) was utilized to analyze RNAs extracted from PTECs from a type 2 diabetic patient and a normal individual. HK-2 cells were used to assess exosomal protein and its modulation and biofunction in DN. Normal individuals and type 2 diabetic patients were enrolled, and nondiabetic db/m mice and diabetic db/db mice were used to validate the molecular mechanism of exosomes in DN. Results: HG stimulated PTECs to increase Fibulin-1 (FBLN1) expression, and PTECs secreted FBLN1 through exosome delivery, thereby inducing epithelial–mesenchymal transition (EMT) in PTECs. Transcriptome analysis found that FBLN1 expression was modulated by miR-1269b, which was downregulated by HG in HK-2 cells. While transfection of miR-1269b reversed FBLN1-mediated EMT in PTECs, miR-1269b inhibitor modulated the phenotype of PTECs toward mesenchymal type under normal glucose (NG) condition. Most importantly, urinary FBLN1 and exosomal miR-1269b levels were correlated with the severity of kidney injury in type 2 diabetic patients. Conclusion: This study demonstrated the communication within PTECs through exosome transmission in an autocrine pattern. MiR-1269b–FBLN1 epigenetic regulatory network could be a potential therapeutic strategy to prevent the progression of DN.
Collapse
Affiliation(s)
- Yi-Chun Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Wen Hung
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Hsun Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Yu Wu
- College of Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su-Chu Lee
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chuan Kuo
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Ya-Ling Hsu,
| |
Collapse
|
16
|
Protein Ligands in the Secretome of CD36 + Fibroblasts Induce Growth Suppression in a Subset of Breast Cancer Cell Lines. Cancers (Basel) 2021; 13:cancers13184521. [PMID: 34572749 PMCID: PMC8469330 DOI: 10.3390/cancers13184521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Human breast cancers are not fully autonomous. They are dependent on nutrients and growth-promoting signals provided by stromal cells. In order to instruct the surrounding cells to provide essential growth factors, cancer cells co-opt normal signaling molecules and mechanisms. To inhibit or potentially reverse tumor growth, our goal is to emulate this signaling and reprogram the microenvironment. For example, in a healthy mammary gland, fibroblasts (FBs) overexpress CD36; and the downregulation of CD36 is one of the hallmarks of cancer-associated FBs. Therefore, in this project, we hypothesized that signaling from CD36+ FBs could cause growth suppression in a subset of breast cancer cell lines. We then designed a series of experiments to validate this growth suppression and identified responsible secreted factors by the CD36+ FBs. These experiments suggested that three protein ligands are primarily responsible for growth suppression in a subset of breast cancer cell lines. Abstract Reprogramming the tumor stroma is an emerging approach to circumventing the challenges of conventional cancer therapies. This strategy, however, is hampered by the lack of a specific molecular target. We previously reported that stromal fibroblasts (FBs) with high expression of CD36 could be utilized for this purpose. These studies are now expanded to identify the secreted factors responsible for tumor suppression. Methodologies included 3D colonies, fluorescent microscopy coupled with quantitative techniques, proteomics profiling, and bioinformatics analysis. The results indicated that the conditioned medium (CM) of the CD36+ FBs caused growth suppression via apoptosis in the triple-negative cell lines of MDA-MB-231, BT549, and Hs578T, but not in the ERBB2+ SKBR3. Following the proteomics and bioinformatic analysis of the CM of CD36+ versus CD36− FBs, we determined KLF10 as one of the transcription factors responsible for growth suppression. We also identified FBLN1, SLIT3, and PENK as active ligands, where their minimum effective concentrations were determined. Finally, in MDA-MB-231, we showed that a mixture of FBLN1, SLIT3, and PENK could induce an amount of growth suppression similar to the CM of CD36+ FBs. In conclusion, our findings suggest that these ligands, secreted by CD36+ FBs, can be targeted for breast cancer treatment.
Collapse
|
17
|
Proteomic Analyses of Fibroblast- and Serum-Derived Exosomes Identify QSOX1 as a Marker for Non-invasive Detection of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13061351. [PMID: 33802764 PMCID: PMC8002505 DOI: 10.3390/cancers13061351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Early diagnosis of colorectal cancer (CRC) is crucial to improve patient outcomes. The tumour microenvironment immediately adapts to malignant transformations, including the activation of fibroblasts in the connective tissue nearby. In this study, we investigated fibroblast activity-related protein secretion via extracellular vesicles (EVs). QSOX1, a protein identified to be significantly reduced in activated fibroblasts and derived EVs, was also found to be significantly reduced in circulating blood plasma EVs of CRC patients as compared to control patients. Hence, blood plasma EV-associated QSOX1 represents a promising platform for diagnostic CRC screening. Abstract The treatment of colorectal cancer (CRC) has improved during the last decades, but methods for crucial early diagnosis are yet to be developed. The influence of the tumour microenvironment on liquid biopsies for early cancer diagnostics are gaining growing interest, especially with emphasis on exosomes (EXO), a subgroup of extracellular vesicles (EVs). In this study, we established paired cancer-associated (CAFs) and normal fibroblasts (NF) from 13 CRC patients and investigated activation status-related protein abundance in derived EXOs. Immunohistochemical staining of matched patient tissue was performed and an independent test cohort of CRC patient plasma-derived EXOs was assessed by ELISA. A total of 11 differentially abundant EV proteins were identified between NFs and CAFs. In plasma EXOs, the CAF-EXO enriched protein EDIL3 was elevated, while the NF-EXO enriched protein QSOX1 was diminished compared to whole plasma. Both markers were significantly reduced in patient-matched CRC tissue compared to healthy colon tissue. In an independent test cohort, a significantly reduced protein abundance of QSOX1 was observed in plasma EXOs from CRC patients compared to controls and diagnostic ROC curve analysis revealed an AUC of 0.904. In conclusion, EXO-associated QSOX1 is a promising novel marker for early diagnosis and non-invasive risk stratification in CRC.
Collapse
|
18
|
Ganig N, Baenke F, Thepkaysone ML, Lin K, Rao VS, Wong FC, Polster H, Schneider M, Helm D, Pecqueux M, Seifert AM, Seifert L, Weitz J, Rahbari NN, Kahlert C. Proteomic Analyses of Fibroblast- and Serum-Derived Exosomes Identify QSOX1 as a Marker for Non-invasive Detection of Colorectal Cancer. Cancers (Basel) 2021. [PMID: 33802764 DOI: 10.3390/cancers130613510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The treatment of colorectal cancer (CRC) has improved during the last decades, but methods for crucial early diagnosis are yet to be developed. The influence of the tumour microenvironment on liquid biopsies for early cancer diagnostics are gaining growing interest, especially with emphasis on exosomes (EXO), a subgroup of extracellular vesicles (EVs). In this study, we established paired cancer-associated (CAFs) and normal fibroblasts (NF) from 13 CRC patients and investigated activation status-related protein abundance in derived EXOs. Immunohistochemical staining of matched patient tissue was performed and an independent test cohort of CRC patient plasma-derived EXOs was assessed by ELISA. A total of 11 differentially abundant EV proteins were identified between NFs and CAFs. In plasma EXOs, the CAF-EXO enriched protein EDIL3 was elevated, while the NF-EXO enriched protein QSOX1 was diminished compared to whole plasma. Both markers were significantly reduced in patient-matched CRC tissue compared to healthy colon tissue. In an independent test cohort, a significantly reduced protein abundance of QSOX1 was observed in plasma EXOs from CRC patients compared to controls and diagnostic ROC curve analysis revealed an AUC of 0.904. In conclusion, EXO-associated QSOX1 is a promising novel marker for early diagnosis and non-invasive risk stratification in CRC.
Collapse
Affiliation(s)
- Nicole Ganig
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Franziska Baenke
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - May-Linn Thepkaysone
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Kuailu Lin
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Venkatesh S Rao
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Heike Polster
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Martin Schneider
- MS-based Protein Analysis Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Dominic Helm
- MS-based Protein Analysis Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Mathieu Pecqueux
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Adrian M Seifert
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, D-69120 Heidelberg, Germany
| | - Lena Seifert
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, D-69120 Heidelberg, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Nuh N Rahbari
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, D-68167 Mannheim, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, D-69120 Heidelberg, Germany
| |
Collapse
|
19
|
Low level of plasma fibulin-1 in patients with thyroid lesions: a case-control study and literature review. Mol Biol Rep 2020; 47:8859-8866. [PMID: 33106982 DOI: 10.1007/s11033-020-05938-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Investigating novel biomarkers discriminating thyroid nodules is a matter of great importance for differential diagnosis. The current study was planned to investigate the diagnostic value of fibulin-1 in plasma specimens of patients with thyroid nodules. A literature review was also performed to gain an understanding of the existing research relevant to the main role of fibulin-1 in carcinogenesis. In this case-control study, the levels of plasma fibulin-1 were compared in 82 subjects including papillary thyroid cancer (PTC; n = 30), multinodular goiter (MNG; n = 30), and healthy subjects (n = 22) using enzyme-linked immunosorbent assay (ELISA). Fibulin-1 levels of patients with PTC and MNG were documented to be significantly lower than those of healthy subjects (PTC vs. Healthy; P = 0.000, MNG vs. Healthy; P = 0.000). No statistically significant differences were found between PTC and MNG groups when fibulin-1 levels were compared (P > 0.05). Low level of plasma fibulin-1 was associated with an increased risk of PTC tumorigenesis (odds ratio = 0.810; 95% CI: 0.704-0.933; P = 0.003). Further, fibulin-1 had an appropriate diagnostic value for detecting PTC patients with a sensitivity of 73.33%, and specificity of 100% at the cutoff value > 4.9 (ng/ml). According to the results of the present research which are tied well with previous studies, the abnormal downregulation of fibulin-1 may play a role in the PTC and MNG tumorigenesis. In addition, fibulin-1 probably promotes the development and progression of other human cancer; however, further studies are needed to improve current understandings.
Collapse
|