1
|
Li AL, Guo KZ, Yu LR, Ge J, Zhou W, Zhang JP. Intercellular communication after myocardial infarction: Macrophage as the centerpiece. Ageing Res Rev 2025; 109:102757. [PMID: 40320153 DOI: 10.1016/j.arr.2025.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
Post-myocardial infarction (MI) injury, repair, and remodeling are complex biological events orchestrated by the heart and immune cell populations, with immune-inflammation at the core. Macrophages, as the main immune cell population active throughout the post-MI injury to repair processes, are the core of this "drama". Recently, single-cell sequencing and other techniques have revealed the heterogeneity of macrophage origins and the complexity of macrophage subpopulation transformation and intercellular communication after MI. Defining the changes in macrophage subpopulation dynamics and macrophage-centered intercellular communication after MI may represent new targeted therapeutic strategies. It also helps to select the optimal time point for anti-inflammatory or pro-repair accurately. Therefore, in this review, we summarize the major macrophage subpopulations active at different times after MI and their functional characteristics based on gene expression profiles. Meanwhile, we summarize macrophage-centered intercellular communication, focusing on how macrophages interact with cardiomyocytes, neutrophils, fibroblasts, endothelial cells, and other cardiac cells. Together, these dominate the transition from inflammatory injury to fibrotic repair in the infarcted heart. We also focus on the regulatory potential of immune metabolism in macrophage subpopulation transformation and intercellular communication after MI, particularly providing new insights about lactylation. We conclude by emphasizing macrophage-centric targeting strategies and clinical translational potential, to provide ideas for the clinical treatment of MI.
Collapse
Affiliation(s)
- Ao-Lin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Kang-Zheng Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Le-Rong Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jun Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wei Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China.
| |
Collapse
|
2
|
Blasco A, Rosell A, Castejón R, Royuela A, Thålin C, Ramil E, Elorza S, Coronado MJ, Martín P, Vázquez J, González-Andrés C, Escudier JM, Ortega J, Bellas C. Inflammatory and neutrophil extracellular trap markers to predict cardiac events after ST-segment elevation myocardial infarction. PLoS One 2025; 20:e0319759. [PMID: 40168324 PMCID: PMC11960995 DOI: 10.1371/journal.pone.0319759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/07/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND AND AIMS Inflammation plays a pivotal role in the pathophysiology of ST-elevation myocardial infarction (STEMI). This involves neutrophil activation and the local release of pro-inflammatory mediators. The formation of neutrophil extracellular traps (NETs) in coronary thrombosis has been linked to poor short-term prognosis following STEMI, but the usefulness of specific circulating NET components as prognostic markers is unclear. We aimed to evaluate the NET-specific marker nucleosomal citrullinated histone H3 (H3Cit-DNA) and other classical inflammatory markers to predict adverse events after STEMI. METHODS This is a single-center retrospective cohort study of patients with STEMI undergoing primary percutaneous coronary intervention (PCI) from 2015 to 2019. We analyzed the association between serum H3Cit-DNA levels, double-stranded DNA, and classical inflammatory markers -such us interleukin (IL) 6 and 1β, TNF-α, and C-reactive protein (CRP)- on admission and the occurrence of major cardiovascular events (MACE), including death, reinfarction, urgent revascularization, or heart failure, after STEMI. RESULTS A total of 487 patients were studied, of which 380 were men [78%]; mean [SD] age of patients was 63 [13] years, and median [95%CI] follow-up was 5.4 [5.2-5.5] years. Median [IQR] H3Cit level was 179.30 [105.30-281.47] ng/ml. No relevant association was found between H3Cit-DNA levels and 30-day mortality (OR, 1.03 [95%CI, 0.71-1.50], p = 0.861) or MACE (0.98 [0.72-1.32], p = 0.879), Killip class (0.95 [0.74-1.21], p = 0.664), or left ventricular ejection fraction (ref.cat. > 50%; < 35%, RRR 1.01 [95%CI, 0.74-1.38], p = 0.952; 35-50%, 1.26 [1.07-1.48], p = 0.005]. Adding CRP and IL-6 levels as covariates to a model based on classical risk factors significantly improved the prediction of MACE at 30 days after STEMI (IDI 0.13; NRI 0.32, p < 0.05). CONCLUSIONS Circulating levels of the NET marker H3Cit-DNA at the time of primary PCI were not predictive of cardiovascular events following STEMI. In contrast, the classical inflammatory markers CRP and interleukin-6 significantly enhanced the discriminative capacity of a clinical 30-day risk prediction model. These findings suggest that measuring circulating NET-specific markers may have limited utility in assessing the inflammatory state during the early stages of STEMI.
Collapse
Affiliation(s)
- Ana Blasco
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
- Research Ethics Committee, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Axel Rosell
- Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm, Sweden
| | - Raquel Castejón
- Internal Medicine Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Ana Royuela
- Biostatistics Unit, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Center for Biomedical Research in Epidemiology and Public Health Network (CIBERESP), Madrid, Spain
| | - Charlotte Thålin
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm, Sweden
| | - Elvira Ramil
- Sequencing and Molecular Biology Unit, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Silvia Elorza
- Clinical Biochemistry Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - María-José Coronado
- Confocal Microscopy Unit, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Paloma Martín
- Molecular Pathology Laboratory, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Center for Biomedical Research Network (CIBERONC), Madrid, Spain
| | - Javier Vázquez
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | | | - Juan M. Escudier
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Javier Ortega
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Carmen Bellas
- Molecular Pathology Laboratory, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Center for Biomedical Research Network (CIBERONC), Madrid, Spain
| |
Collapse
|
3
|
Ondracek AS, Afonyushkin T, Aszlan A, Taqi S, Koller T, Artner T, Porsch F, Resch U, Sharma S, Scherz T, Spittler A, Haertinger M, Hofbauer TM, Ozsvar-Kozma M, Seidl V, Beitzke D, Krueger M, Testori C, Lang IM, Binder CJ. Malondialdehyde-specific natural IgM inhibit NETosis triggered by culprit site-derived extracellular vesicles from myocardial infarction patients. Eur Heart J 2025; 46:926-939. [PMID: 39215577 PMCID: PMC11887544 DOI: 10.1093/eurheartj/ehae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND AIMS Neutrophil extracellular traps (NETs) trigger atherothrombosis during acute myocardial infarction (AMI), but mechanisms of induction remain unclear. Levels of extracellular vesicles (EV) carrying oxidation-specific epitopes (OSE), which are targeted by specific natural immunoglobulin M (IgM), are increased at the culprit site in AMI. This study investigated EV as inducers of NETosis and assessed the inhibitory effect of natural anti-OSE-IgM in this process. METHODS Blood from the culprit and peripheral site of ST-segment elevation myocardial infarction (STEMI) patients (n = 28) was collected, and myocardial function assessed by cardiac magnetic resonance imaging (cMRI) 4 ± 2 days and 195 ± 15 days post-AMI. Extracellular vesicles were isolated from patient plasma and cell culture supernatants for neutrophil stimulation in vitro and in vivo, in the presence of a malondialdehyde (MDA)-specific IgM or an isotype control. NETosis and neutrophil functions were assessed via enzyme-linked immunosorbent assay and fluorescence microscopy. Pharmacological inhibitors were used to map signalling pathways. Neutrophil extracellular trap markers and anti-OSE-IgM were measured by ELISA. RESULTS CD45+ MDA+ EV and NET markers were elevated at the culprit site. Extracellular vesicles induced neutrophil activation and NET formation via TLR4 and PAD4, and mice injected with EV showed increased NETosis. Malondialdehyde-specific IgM levels were inversely associated with citH3 in STEMI patient blood. An MDA-specific IgM inhibited EV-induced NET release in vitro and in vivo. CD45+ MDA+ EV concentrations inversely correlated with left ventricular ejection fraction post-AMI. CONCLUSIONS Culprit site-derived EV induce NETosis, while MDA-specific natural IgM inhibit this effect, potentially impacting outcome after AMI.
Collapse
Affiliation(s)
- Anna S Ondracek
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Taras Afonyushkin
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Adrienne Aszlan
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Soreen Taqi
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute for Genetics and Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Thomas Scherz
- Department of Dermatology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Andreas Spittler
- Department of Surgery and Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Maximilian Haertinger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas M Hofbauer
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Maria Ozsvar-Kozma
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Veronika Seidl
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-guided therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Krueger
- Institute for Genetics and Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Christoph Testori
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| |
Collapse
|
4
|
Mondal J, Zhang J, Qing F, Li S, Kumar D, Huse JT, Giancotti FG. Brd7 loss reawakens dormant metastasis initiating cells in lung by forging an immunosuppressive niche. Nat Commun 2025; 16:1378. [PMID: 39910049 PMCID: PMC11799300 DOI: 10.1038/s41467-025-56347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Metastasis in cancer is influenced by epigenetic factors. Using an in vivo screen, we demonstrate that several subunits of the polybromo-associated BAF (PBAF) chromatin remodeling complex, particularly Brd7, are required for maintaining breast cancer metastatic dormancy in the lungs of female mice. Brd7 loss induces metastatic reawakening, along with modifications in epigenomic landscapes and upregulated oncogenic signaling. Breast cancer cells harboring Brd7 inactivation also reprogram the surrounding immune microenvironment by downregulating MHC-1 expression and promoting a pro-metastatic cytokine profile. Flow cytometric and single-cell analyses reveal increased levels of pro-tumorigenic inflammatory and transitional neutrophils, CD8+ exhausted T cells, and CD4+ stress response T cells in lungs from female mice harboring Brd7-deficient metastases. Finally, attenuating this immunosuppressive milieu by neutrophil depletion, neutrophil extracellular trap (NET) inhibition, or immune checkpoint therapy abrogates metastatic outgrowth. These findings implicate Brd7 and PBAF in triggering metastatic outgrowth in cancer, pointing to targetable underlying mechanisms involving specific immune cell compartments.
Collapse
Affiliation(s)
- Jayanta Mondal
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junfeng Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China.
| | - Feng Qing
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
| | - Shunping Li
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
| | - Dhiraj Kumar
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Johnson and Johnson Enterprise Innovations, Inc, Interventional Oncology, Spring House, PA, USA
| | - Jason T Huse
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Filippo G Giancotti
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
5
|
Feješ A, Šebeková K, Borbélyová V. Pathophysiological Role of Neutrophil Extracellular Traps in Diet-Induced Obesity and Metabolic Syndrome in Animal Models. Nutrients 2025; 17:241. [PMID: 39861371 PMCID: PMC11768048 DOI: 10.3390/nu17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation. Neutrophils are first to be recruited to sites of inflammation, where they contribute to host defense via phagocytosis, degranulation, and extrusion of neutrophil extracellular traps (NETs). NETs are web-like DNA structures of nuclear or mitochondrial DNA associated with cytosolic antimicrobial proteins. The primary function of NETosis is preventing the dissemination of pathogens. However, neutrophils may occasionally misidentify host molecules as danger-associated molecular patterns, triggering NET formation. This can lead to further recruitment of neutrophils, resulting in propagation and a vicious cycle of persistent systemic inflammation. This scenario may occur when neutrophils infiltrate expanded obese adipose tissue. Thus, NETosis is implicated in the pathophysiology of autoimmune and metabolic disorders, including obesity. This review explores the role of NETosis in obesity and two obesity-associated conditions-hypertension and liver steatosis. With the rising prevalence of obesity driving research into its pathophysiology, particularly through diet-induced obesity models in rodents, we discuss insights gained from both human and animal studies. Additionally, we highlight the potential offered by rodent models and the opportunities presented by genetically modified mouse strains for advancing our understanding of obesity-related inflammation.
Collapse
Affiliation(s)
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 83303 Bratislava, Slovakia; (A.F.); (V.B.)
| | | |
Collapse
|
6
|
Ansari AW, Ahmad F, Alam MA, Raheed T, Zaqout A, Al-Maslamani M, Ahmad A, Buddenkotte J, Al-Khal A, Steinhoff M. Virus-Induced Host Chemokine CCL2 in COVID-19 Pathogenesis: Potential Prognostic Marker and Target of Anti-Inflammatory Strategy. Rev Med Virol 2024; 34:e2578. [PMID: 39192485 DOI: 10.1002/rmv.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
A wide variety of inflammatory mediators, mainly cytokines and chemokines, are induced during SARS CoV-2 infection. Among these proinflammatory mediators, chemokines tend to play a pivotal role in virus-mediated immunopathology. The C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1) is a potent proinflammatory cytokine and strong chemoattractant of monocytes, macrophages and CD4+ T cells bearing C-C chemokine receptor type-2 (CCR2). Besides controlling immune cell trafficking, CCL2 is also involved in multiple pathophysiological processes including systemic hyperinflammation associated cytokine release syndrome (CRS), organ fibrosis and blood coagulation. These pathological features are commonly manifested in severe and fatal cases of COVID-19. Given the crucial role of CCL2 in COVID-19 pathogenesis, the CCL2:CCR2 axis may constitute a potential therapeutic target to control virus-induced hyperinflammation and multi-organ dysfunction. Herein we describe recent advances on elucidating the role of CCL2 in COVID-19 pathogenesis, prognosis, and a potential target of anti-inflammatory interventions.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Thesni Raheed
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Zaqout
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Muna Al-Maslamani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Abdullatif Al-Khal
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Dermatology, Weill Cornell University, New York, New York, USA
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
7
|
Nemphos SM, Green HC, Prusak JE, Fell SL, Goff K, Varnado M, Didier K, Guy N, Moström MJ, Tatum C, Massey C, Barnes MB, Rowe LA, Allers C, Blair RV, Embers ME, Maness NJ, Marx PA, Grasperge B, Kaur A, De Paris K, Shaffer JG, Hensley-McBain T, Londono-Renteria B, Manuzak JA. Elevated Inflammation Associated with Markers of Neutrophil Function and Gastrointestinal Disruption in Pilot Study of Plasmodium fragile Co-Infection of ART-Treated SIVmac239+ Rhesus Macaques. Viruses 2024; 16:1036. [PMID: 39066199 PMCID: PMC11281461 DOI: 10.3390/v16071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) and malaria, caused by infection with Plasmodium spp., are endemic in similar geographical locations. As a result, there is high potential for HIV/Plasmodium co-infection, which increases the pathology of both diseases. However, the immunological mechanisms underlying the exacerbated disease pathology observed in co-infected individuals are poorly understood. Moreover, there is limited data available on the impact of Plasmodium co-infection on antiretroviral (ART)-treated HIV infection. Here, we used the rhesus macaque (RM) model to conduct a pilot study to establish a model of Plasmodium fragile co-infection during ART-treated simian immunodeficiency virus (SIV) infection, and to begin to characterize the immunopathogenic effect of co-infection in the context of ART. We observed that P. fragile co-infection resulted in parasitemia and anemia, as well as persistently detectable viral loads (VLs) and decreased absolute CD4+ T-cell counts despite daily ART treatment. Notably, P. fragile co-infection was associated with increased levels of inflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1). P. fragile co-infection was also associated with increased levels of neutrophil elastase, a plasma marker of neutrophil extracellular trap (NET) formation, but significant decreases in markers of neutrophil degranulation, potentially indicating a shift in the neutrophil functionality during co-infection. Finally, we characterized the levels of plasma markers of gastrointestinal (GI) barrier permeability and microbial translocation and observed significant correlations between indicators of GI dysfunction, clinical markers of SIV and Plasmodium infection, and neutrophil frequency and function. Taken together, these pilot data verify the utility of using the RM model to examine ART-treated SIV/P. fragile co-infection, and indicate that neutrophil-driven inflammation and GI dysfunction may underlie heightened SIV/P. fragile co-infection pathogenesis.
Collapse
Affiliation(s)
- Sydney M. Nemphos
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Hannah C. Green
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - James E. Prusak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Sallie L. Fell
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Megan Varnado
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kaitlin Didier
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Natalie Guy
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Matilda J. Moström
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Coty Tatum
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Chad Massey
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mary B. Barnes
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Lori A. Rowe
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Carolina Allers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Robert V. Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Preston A. Marx
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Brooke Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27559, USA
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | | | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Jennifer A. Manuzak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
8
|
Ibrahim N, Eilenberg W, Neumayer C, Brostjan C. Neutrophil Extracellular Traps in Cardiovascular and Aortic Disease: A Narrative Review on Molecular Mechanisms and Therapeutic Targeting. Int J Mol Sci 2024; 25:3983. [PMID: 38612791 PMCID: PMC11012109 DOI: 10.3390/ijms25073983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, are released by neutrophils in response to pathogens but are also recognized for their involvement in a range of pathological processes, including autoimmune diseases, cancer, and cardiovascular diseases. This review explores the intricate roles of NETs in different cardiovascular conditions such as thrombosis, atherosclerosis, myocardial infarction, COVID-19, and particularly in the pathogenesis of abdominal aortic aneurysms. We elucidate the mechanisms underlying NET formation and function, provide a foundational understanding of their biological significance, and highlight the contribution of NETs to inflammation, thrombosis, and tissue remodeling in vascular disease. Therapeutic strategies for preventing NET release are compared with approaches targeting components of formed NETs in cardiovascular disease. Current limitations and potential avenues for clinical translation of anti-NET treatments are discussed.
Collapse
Affiliation(s)
| | | | | | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, 1090 Vienna, Austria; (N.I.); (W.E.); (C.N.)
| |
Collapse
|
9
|
Blasco A, Rosell A, Castejón R, Coronado MJ, Royuela A, Ramil E, Elorza S, Thålin C, Martín P, Angulo B, Rascón B, García-Gómez S, Zabala I, Ortega J, Silva L, Bellas C. Analysis of NETs (neutrophil extracellular traps) in coronary thrombus and peripheral blood of patients with ST-segment elevation myocardial infarction. Thromb Res 2024; 235:18-21. [PMID: 38281441 DOI: 10.1016/j.thromres.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Affiliation(s)
- Ana Blasco
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain; Research Ethics Committee, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain.
| | - Axel Rosell
- Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm 18288, Sweden
| | - Raquel Castejón
- Internal Medicine Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - María José Coronado
- Confocal Microscopy Unit, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Ana Royuela
- Biostatistics Unit, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain; Center for Biomedical Research in Epidemiology and Public Health Network (CIBERESP), Madrid, Spain
| | - Elvira Ramil
- Sequencing and Molecular Biology Unit, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Silvia Elorza
- Clinical Biochemistry Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Charlotte Thålin
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm 18288, Sweden
| | - Paloma Martín
- Molecular Pathology Laboratory, Pathology Department, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain; Center for Biomedical Research Network (CIBERONC), Madrid, Spain
| | - Basilio Angulo
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Beatriz Rascón
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Sergio García-Gómez
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Inuntze Zabala
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Javier Ortega
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Lorenzo Silva
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Carmen Bellas
- Molecular Pathology Laboratory, Pathology Department, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain; Center for Biomedical Research Network (CIBERONC), Madrid, Spain
| |
Collapse
|
10
|
Jung JY, Ahn MH, Kim JW, Suh CH, Han JH, Kim HA. Association between CCR2 and CCL2 expression and NET stimulation in adult-onset Still's disease. Sci Rep 2023; 13:12218. [PMID: 37500699 PMCID: PMC10374521 DOI: 10.1038/s41598-023-39517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Adult-onset Still's disease (AOSD) is a systemic inflammatory disease characterized by the activation of monocyte-derived cells and the release of neutrophil extracellular traps (NET). C-C motif ligand (CCL) 2 is a chemoattractant that interacts with the C-C motif chemokine receptor (CCR) 2, resulting in monocyte recruitment and activation. CCL2 and CCR2 were measured with enzyme-linked immunosorbent assay (ELISA) at the serum level, and using immunohistochemical staining at the skin and lymph node tissues levels. THP-1 cell lysates were analyzed using western blot and ELISA after NET stimulation in patients with AOSD. Serum CCL2 level was higher in patients with AOSD than in patients with rheumatoid arthritis and healthy controls (HCs). In patients with AOSD, the percentage of CCL2-positive inflammatory cells in the skin tissues and CCR2-positive inflammatory cells in the lymph nodes increased, compared to that in HCs and in patients with reactive lymphadenopathy, respectively. NET induced in patients with AOSD enhanced the secretion of CCR2, higher CCR2 expression in monocytes, and the levels of interleukin (IL)-1β, IL-6, and IL-18 from THP-1 cells. Our findings suggest that upregulation of the CCL2-CCR2 axis may contribute to the clinical and inflammatory characteristics of AOSD.
Collapse
Affiliation(s)
- Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Mi-Hyun Ahn
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Jae Ho Han
- Department of Pathology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
11
|
Lei W, Jia L, Wang Z, Liang Z, Aizhen Z, Liu Y, Tian Y, Zhao L, Chen Y, Shi G, Yang Z, Yang Y, Xu X. CC chemokines family in fibrosis and aging: From mechanisms to therapy. Ageing Res Rev 2023; 87:101900. [PMID: 36871782 DOI: 10.1016/j.arr.2023.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Fibrosis is a universal aging-related pathological process in the different organ, but is actually a self-repair excessive response. To date, it still remains a large unmet therapeutic need to restore injured tissue architecture without detrimental side effects, due to the limited clinical success in the treatment of fibrotic disease. Although specific organ fibrosis and the associated triggers have distinct pathophysiological and clinical manifestations, they often share involved cascades and common traits, including inflammatory stimuli, endothelial cell injury, and macrophage recruitment. These pathological processes can be widely controlled by a kind of cytokines, namely chemokines. Chemokines act as a potent chemoattractant to regulate cell trafficking, angiogenesis, and extracellular matrix (ECM). Based on the position and number of N-terminal cysteine residues, chemokines are divided into four groups: the CXC group, the CX3C group, the (X)C group, and the CC group. The CC chemokine classes (28 members) is the most numerous and diverse subfamily of the four chemokine groups. In this Review, we summarized the latest advances in the understanding of the importance of CC chemokine in the pathogenesis of fibrosis and aging and discussed potential clinical therapeutic strategies and perspectives aimed at resolving excessive scarring formation.
Collapse
Affiliation(s)
- Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Liyuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, 430064, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Zhao Aizhen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yawu Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guangyong Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
12
|
Zhang RYK, Cochran BJ, Thomas SR, Rye KA. Impact of Reperfusion on Temporal Immune Cell Dynamics After Myocardial Infarction. J Am Heart Assoc 2023; 12:e027600. [PMID: 36789837 PMCID: PMC10111498 DOI: 10.1161/jaha.122.027600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Excessive inflammation and impaired healing of cardiac tissue following a myocardial infarction (MI) can drive the development of heart failure. Cardiac repair begins immediately after the onset of MI and continues for months. The repair process can be divided into the following 3 overlapping phases, each having distinct functions and sequelae: the inflammatory phase, the proliferative phase, and the maturation phase. Macrophages, neutrophils, and lymphocytes are present in the myocardium throughout the repair process and govern the duration and function of each of these phases. However, changes in the functions of these cell types across each phase are poorly characterized. Numerous immunomodulatory therapies that specifically target inflammation have been developed for promoting cardiac repair and preventing heart failure after MI. However, these treatments have been largely unsuccessful in large-scale clinical randomized controlled trials. A potential explanation for this failure is the lack of a thorough understanding of the time-dependent evolution of the functions of immune cells after a major cardiovascular event. Failure to account for this temporal plasticity in cell function may reduce the efficacy of immunomodulatory approaches that target cardiac repair. This review is concerned with how the functions of different immune cells change with time following an MI. Improved understanding of the temporal changes in immune cell function is important for the future development of effective and targeted treatments for preventing heart failure after MI.
Collapse
Affiliation(s)
| | - Blake J Cochran
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Shane R Thomas
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Kerry-Anne Rye
- School of Medical Sciences University of New South Wales Sydney New South Wales
| |
Collapse
|
13
|
Yamamoto Y, Kadoya K, Terkawi MA, Endo T, Konno K, Watanabe M, Ichihara S, Hara A, Kaneko K, Iwasaki N, Ishijima M. Neutrophils delay repair process in Wallerian degeneration by releasing NETs outside the parenchyma. Life Sci Alliance 2022; 5:e202201399. [PMID: 35961782 PMCID: PMC9375156 DOI: 10.26508/lsa.202201399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/05/2022] Open
Abstract
Although inflammation is indispensable for the repair process in Wallerian degeneration (WD), the role of neutrophils in the WD repair process remains unclear. After peripheral nerve injury, neutrophils accumulate at the epineurium but not the parenchyma in the WD region because of the blood-nerve barrier. An increase or decrease in the number of neutrophils delayed or promoted macrophage infiltration from the epineurium into the parenchyma and the repair process in WD. Abundant neutrophil extracellular traps (NETs) were formed around neutrophils, and its inhibition dramatically increased macrophage infiltration into the parenchyma. Furthermore, inhibition of either MIF or its receptor, CXCR4, in neutrophils decreased NET formation, resulting in enhanced macrophage infiltration into the parenchyma. Moreover, inhibiting MIF for just 2 h after peripheral nerve injury promoted the repair process. These findings indicate that neutrophils delay the repair process in WD from outside the parenchyma by inhibiting macrophage infiltration via NET formation and that neutrophils, NETs, MIF, and CXCR4 are therapeutic targets for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Ichihara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Akira Hara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kazuo Kaneko
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
de los Reyes-García AM, Rivera-Caravaca JM, Zapata-Martínez L, Águila S, Véliz-Martínez A, García-Barberá N, Gil-Perez P, Guijarro-Carrillo PJ, Orenes-Piñero E, López-García C, Lozano ML, Marín F, Martínez C, González-Conejero R. MiR-146a Contributes to Thromboinflammation and Recurrence in Young Patients with Acute Myocardial Infarction. J Pers Med 2022; 12:jpm12071185. [PMID: 35887682 PMCID: PMC9318357 DOI: 10.3390/jpm12071185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Studies on older patients have established notable conceptual changes in the etiopathogenesis of acute coronary syndrome (ACS), but little is known about this disease in young patients (<45 years). Of special interest is thromboinflammation, key at onset, evolution and therapy of cardiovascular pathology. Therefore, we explored whether ACS at an early age is a thromboinflammatory disease by analyzing NETs and rs2431697 of miR-146a (a miRNA considered as a brake of TLR/NF-kB pathway), elements previously related to higher rates of recurrence in atrial fibrillation and sepsis. We included 359 ACS patients (<45 years) and classified them for specific analysis into G1 (collected during the hospitalization of the first event), G2 and G3 (retrospectively collected from patients with or without ACS recurrence, respectively). cfDNA and citH3−DNA were quantified, and rs2431697 was genotyped. Analysis in the overall cohort showed a moderate but significant correlation between cfDNA and citH3−DNA and Killip−Kimball score. In addition, patients with citH3−DNA > Q4 more frequently had a history of previous stroke (6.1% vs. 1.6%). In turn, rs2431697 did not confer increased risk for the onset of ACS, but T carriers had significantly higher levels of NET markers. By groups, we found that cfDNA levels were similarly higher in all patients, but citH3−DNA was especially higher in G1, suggesting that in plasma, this marker may be attenuated over time. Finally, patients from G2 with the worst markers (cfDNA and citH3−DNA > Q2 and T allele) had a two-fold increased risk of a new ischemic event at 2-year follow-up. In conclusion, our data confirm that ACS is younger onset with thromboinflammatory disease. In addition, these data consolidate rs2431697 as a silent proinflammatory factor predisposing to NETosis, and to a higher rate of adverse events in different cardiovascular diseases.
Collapse
Affiliation(s)
- Ascensión M. de los Reyes-García
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (A.M.d.l.R.-G.); (L.Z.-M.); (S.Á.); (N.G.-B.); (P.J.G.-C.)
| | - José Miguel Rivera-Caravaca
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, CIBERCV, 30003 Murcia, Spain; (J.M.R.-C.); (A.V.-M.); (P.G.-P.); (C.L.-G.); (F.M.)
| | - Laura Zapata-Martínez
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (A.M.d.l.R.-G.); (L.Z.-M.); (S.Á.); (N.G.-B.); (P.J.G.-C.)
| | - Sonia Águila
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (A.M.d.l.R.-G.); (L.Z.-M.); (S.Á.); (N.G.-B.); (P.J.G.-C.)
| | - Andrea Véliz-Martínez
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, CIBERCV, 30003 Murcia, Spain; (J.M.R.-C.); (A.V.-M.); (P.G.-P.); (C.L.-G.); (F.M.)
| | - Nuria García-Barberá
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (A.M.d.l.R.-G.); (L.Z.-M.); (S.Á.); (N.G.-B.); (P.J.G.-C.)
| | - Pablo Gil-Perez
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, CIBERCV, 30003 Murcia, Spain; (J.M.R.-C.); (A.V.-M.); (P.G.-P.); (C.L.-G.); (F.M.)
| | - Pedro J. Guijarro-Carrillo
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (A.M.d.l.R.-G.); (L.Z.-M.); (S.Á.); (N.G.-B.); (P.J.G.-C.)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology, University of Murcia, IMIB-Arrixaca, CIBERCV, 30003 Murcia, Spain;
| | - Cecilia López-García
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, CIBERCV, 30003 Murcia, Spain; (J.M.R.-C.); (A.V.-M.); (P.G.-P.); (C.L.-G.); (F.M.)
| | - María L. Lozano
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, 30003 Murcia, Spain;
| | - Francisco Marín
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, CIBERCV, 30003 Murcia, Spain; (J.M.R.-C.); (A.V.-M.); (P.G.-P.); (C.L.-G.); (F.M.)
| | - Constantino Martínez
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (A.M.d.l.R.-G.); (L.Z.-M.); (S.Á.); (N.G.-B.); (P.J.G.-C.)
- Correspondence: (C.M.); (R.G.-C.); Tel.: +34-968341990 (ext. 911948) (C.M.); +34-968341990 (ext. 911915) (R.G.-C.)
| | - Rocío González-Conejero
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, 30003 Murcia, Spain;
- Correspondence: (C.M.); (R.G.-C.); Tel.: +34-968341990 (ext. 911948) (C.M.); +34-968341990 (ext. 911915) (R.G.-C.)
| |
Collapse
|
15
|
Pharmacologic modulation of intracellular Na
+
concentration with ranolazine impacts inflammatory response in humans and mice. Proc Natl Acad Sci U S A 2022; 119:e2207020119. [PMID: 35858345 PMCID: PMC9303949 DOI: 10.1073/pnas.2207020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation is a key process accompanying cardiovascular disease. Reducing inflammation is therefore an important therapeutic option. We provide evidence, that Na+ and Ca2+ modulation regulate the inflammatory response. Reducing intracellular Na+ pharmacologically using the drug ranolazine reduced the influx of Ca2+ during inflammation and thereby reduced the cellular production of inflammatory mediators. Similarly, reduction of extracellular Na+ and knockdown of a Na+–Ca2+ exchanger led to reduced inflammation. Our in vitro finding translated to in vivo experiments as ranolazine treatment led to reduced atherosclerotic plaque growth, increased plaque stability, and diminished inflammation in a mouse model. Finally, we were able to observe the antiinflammatory effect of Na+ modulation in human patients, demonstrating that inflammation was reduced after treatment with ranolazine. Changes in Ca2+ influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca2+ has been widely acknowledged, little is known about the role of Na+. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na+ as well as Ca2+ levels. In stable coronary artery disease patients (n = 51) we observed reduced levels of high-sensitive C-reactive protein (CRP) 3 mo after the start of ranolazine treatment (n = 25) as compared to the control group. Furthermore, we found that in 3,808 acute coronary syndrome patients of the MERLIN‐TIMI 36 trial, individuals treated with ranolazine (1,934 patients) showed reduced CRP values compared to placebo-treated patients. The antiinflammatory effects of sodium modulation were further confirmed in an atherosclerotic mouse model. LDL−/− mice on a high-fat diet were treated with ranolazine, resulting in a reduced atherosclerotic plaque burden, increased plaque stability, and reduced activation of the immune system. Pharmacological Na+ inhibition by ranolazine led to reduced express of adhesion molecules and proinflammatory cytokines and reduced adhesion of leukocytes to activated endothelium both in vitro and in vivo. We demonstrate that functional Na+ shuttling is required for a full cellular response to inflammation and that inhibition of Na+ influx results in an attenuated inflammatory reaction. In conclusion, we demonstrate that inhibition of Na+–Ca2+ exchange during inflammation reduces the inflammatory response in human endothelial cells in vitro, in a mouse atherosclerotic disease model, and in human patients.
Collapse
|
16
|
Files DC, Tacke F, O’Sullivan A, Dorr P, Ferguson WG, Powderly WG. Rationale of using the dual chemokine receptor CCR2/CCR5 inhibitor cenicriviroc for the treatment of COVID-19. PLoS Pathog 2022; 18:e1010547. [PMID: 35749425 PMCID: PMC9231801 DOI: 10.1371/journal.ppat.1010547] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has created a global pandemic infecting over 230 million people and costing millions of lives. Therapies to attenuate severe disease are desperately needed. Cenicriviroc (CVC), a C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 2 (CCR2) antagonist, an agent previously studied in advanced clinical trials for patients with HIV or nonalcoholic steatohepatitis (NASH), may have the potential to reduce respiratory and cardiovascular organ failures related to COVID-19. Inhibiting the CCR2 and CCR5 pathways could attenuate or prevent inflammation or fibrosis in both early and late stages of the disease and improve outcomes of COVID-19. Clinical trials using CVC either in addition to standard of care (SoC; e.g., dexamethasone) or in combination with other investigational agents in patients with COVID-19 are currently ongoing. These trials intend to leverage the anti-inflammatory actions of CVC for ameliorating the clinical course of COVID-19 and prevent complications. This article reviews the literature surrounding the CCR2 and CCR5 pathways, their proposed role in COVID-19, and the potential role of CVC to improve outcomes.
Collapse
Affiliation(s)
- Daniel Clark Files
- Department of Internal Medicine, Pulmonary, Critical Care, Allergy and Immunology Section, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Frank Tacke
- Medical Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | | | - Patrick Dorr
- AbbVie Inc., North Chicago, Illinois, United States of America
| | | | - William G. Powderly
- John T. Milliken Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine in St Louis, St Louis, Missouri, United States of America
| |
Collapse
|
17
|
de Buhr N, Baumann T, Werlein C, Fingerhut L, Imker R, Meurer M, Götz F, Bronzlik P, Kühnel MP, Jonigk DD, Ernst J, Leotescu A, Gabriel MM, Worthmann H, Lichtinghagen R, Tiede A, von Köckritz-Blickwede M, Falk CS, Weissenborn K, Schuppner R, Grosse GM. Insights Into Immunothrombotic Mechanisms in Acute Stroke due to Vaccine-Induced Immune Thrombotic Thrombocytopenia. Front Immunol 2022; 13:879157. [PMID: 35619694 PMCID: PMC9128407 DOI: 10.3389/fimmu.2022.879157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 12/29/2022] Open
Abstract
During the COVID-19 pandemic, vaccination is the most important countermeasure. Pharmacovigilance concerns however emerged with very rare, but potentially disastrous thrombotic complications following vaccination with ChAdOx1. Platelet factor-4 antibody mediated vaccine-induced immune thrombotic thrombocytopenia (VITT) was described as an underlying mechanism of these thrombotic events. Recent work moreover suggests that mechanisms of immunothrombosis including neutrophil extracellular trap (NET) formation might be critical for thrombogenesis during VITT. In this study, we investigated blood and thrombus specimens of a female patient who suffered severe stroke due to VITT after vaccination with ChAdOx1 in comparison to 13 control stroke patients with similar clinical characteristics. We analyzed cerebral thrombi using histological examination, staining of complement factors, NET-markers, DNase and LL-37. In blood samples at the hyper-acute phase of stroke and 7 days later, we determined cell-free DNA, myeloperoxidase-histone complexes, DNase activity, myeloperoxidase activity, LL-37 and inflammatory cytokines. NET markers were identified in thrombi of all patients. Interestingly, the thrombus of the VITT-patient exclusively revealed complement factors and high amounts of DNase and LL-37. High DNase activity was also measured in blood, implying a disturbed NET-regulation. Furthermore, serum of the VITT-patient inhibited reactive oxygen species-dependent NET-release by phorbol-myristate-acetate to a lesser degree compared to controls, indicating either less efficient NET-inhibition or enhanced NET-induction in the blood of the VITT-patient. Additionally, the changes in specific cytokines over time were emphasized in the VITT-patient as well. In conclusion, insufficient resolution of NETs, e.g. by endogenous DNases or protection of NETs against degradation by embedded factors like the antimicrobial peptide LL-37 might thus be an important factor in the pathology of VITT besides increased NET-formation. On the basis of these findings, we discuss the potential implications of the mechanisms of disturbed NETs-degradation for diagnostic and therapeutic approaches in VITT-related thrombogenesis, other auto-immune disorders and beyond.
Collapse
Affiliation(s)
- Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tristan Baumann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Leonie Fingerhut
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.,Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rabea Imker
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Friedrich Götz
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Paul Bronzlik
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Mark P Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Danny D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Johanna Ernst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andrei Leotescu
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Maria M Gabriel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Ramona Schuppner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Gerrit M Grosse
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Tan Y, Bie YL, Chen L, Zhao YH, Song L, Miao LN, Yu YQ, Chai H, Ma XJ, Shi DZ. Lingbao Huxin Pill Alleviates Apoptosis and Inflammation at Infarct Border Zone through SIRT1-Mediated FOXO1 and NF- κ B Pathways in Rat Model of Acute Myocardial Infarction. Chin J Integr Med 2022; 28:330-338. [PMID: 34826042 DOI: 10.1007/s11655-021-2881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate whether Lingbao Huxin Pill (LBHX) protects against acute myocardial infarction (AMI) at the infarct border zone (IBZ) of myocardial tissue by regulating apoptosis and inflammation through the sirtuin 1 (SIRT1)-mediated forkhead box protein O1 (FOXO1) and nuclear factor-κ B (NF-κ B) signaling pathways. METHODS Six-week-old Wistar rats with normal diet were randomized into the sham, the model, Betaloc (0.9 mg/kg daily), LBHX-L (0.45 mg/kg daily), LBHX-M (0.9 mg/kg daily), LBHX-H (1.8 mg/kg daily), and LBHX+EX527 (0.9 mg/kg daily) groups according to the method of random number table, 13 in each group. In this study, left anterior descending coronary artery (LADCA) ligation was performed to induce an AMI model in rats. The myocardial infarction area was examined using a 2,3,5-triphenyltetrazolium chloride solution staining assay. A TdT-mediated dUTP nick-end labeling (TUNEL) assay was conducted to assess cardiomyocyte apoptosis in the IBZ. The histopathology of myocardial tissue at the IBZ was assessed with Heidenhain, Masson and hematoxylineosin (HE) staining assays. The expression levels of tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-1 β, and intercellular adhesion molecule-1 were measured using enzyme-linked immunosorbent assays (ELISAs). The mRNA expressions of SIRT1 and FOXO1 were detected by real-time qPCR (RT-qPCR). The protein expressions of SIRT1, FOXO1, SOD2, BAX and NF- κ B p65 were detected by Western blot analysis. RESULTS The ligation of the LADCA successfully induced an AMI model. The LBHX pretreatment reduced the infarct size in the AMI rats (P<0.01). The TUNEL assay revealed that LBHX inhibited cardiomyocyte apoptosis at the IBZ. Further, the histological examination showed that the LBHX pretreatment decreased the ischemic area of myocardial tissue (P<0.05), myocardial interstitial collagen deposition (P<0.05) and inflammation at the IBZ. The ELISA results indicated that LBHX decreased the serum levels of inflammatory cytokines in the AMI rats (P<0.05 or P<0.01). Furthermore, Western blot analysis revealed that the LBHX pretreatment upregulated the protein levels of SIRT1, FOXO1 and SOD2 (P<0.05) and downregulated NF- κ B p65 and BAX expressions (P<0.05). The RT-qPCR results showed that LBHX increased the SIRT1 mRNA and FOXO1 mRNA levels (P<0.05). These protective effects, including inhibiting apoptosis and alleviating inflammation in the IBZ, were partially abolished by EX527, an inhibitor of SIRT1. CONCLUSION LBHX could protect against AMI by suppressing apoptosis and inflammation in AMI rats and the SIRT1-mediated FOXO1 and NF- κ B signaling pathways were involved in the cardioprotection effect of LBHX.
Collapse
Affiliation(s)
- Yu Tan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yu-Long Bie
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Li Chen
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan Hospital), Beijing, 100191, China
| | - Yi-Han Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lei Song
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Li-Na Miao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Qiao Yu
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hua Chai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiao-Juan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Da-Zhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| |
Collapse
|
19
|
Ligi D, Maniscalco R, Plebani M, Lippi G, Mannello F. Do Circulating Histones Represent the Missing Link among COVID-19 Infection and Multiorgan Injuries, Microvascular Coagulopathy and Systemic Hyperinflammation? J Clin Med 2022; 11:jcm11071800. [PMID: 35407410 PMCID: PMC8999947 DOI: 10.3390/jcm11071800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Several studies shed light on the interplay among inflammation, thrombosis, multi-organ failures and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Increasing levels of both free and/or circulating histones have been associated to coronavirus disease 2019 (COVID-19), enhancing the risk of heart attack and stroke with coagulopathy and systemic hyperinflammation. In this view, by considering both the biological and clinical rationale, circulating histones may be relevant as diagnostic biomarkers for stratifying COVID-19 patients at higher risk for viral sepsis, and as predictive laboratory medicine tool for targeted therapies.
Collapse
Affiliation(s)
- Daniela Ligi
- Unit of Clinical Biochemistry, Department of Biomolecular Sciences-DISB, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Rosanna Maniscalco
- Unit of Clinical Biochemistry, Department of Biomolecular Sciences-DISB, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padua, 35128 Padua, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University Hospital of Verona, 37134 Verona, Italy
| | - Ferdinando Mannello
- Unit of Clinical Biochemistry, Department of Biomolecular Sciences-DISB, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
20
|
Blasco A, Coronado MJ, Vela P, Martin P, Solano J, Ramil E, Mesquida A, Santos A, Cozar B, Royuela A, Garcia D, Camarzana S, Parra C, Oteo JF, Goicolea J, Bellas C. Prognostic implications of Neutrophil Extracellular Traps in coronary thrombi of patients with ST-elevation myocardial infarction. Thromb Haemost 2021; 122:1415-1428. [PMID: 34847588 DOI: 10.1055/a-1709-5271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIMS The mechanisms of coronary thrombosis can influence prognosis after STEMI and allow for different treatment groups to be identified; an association between neutrophil extracellular traps (NETs) and unfavorable clinical outcomes has been suggested. Our aim was to determine the role played by NETs in coronary thrombosis and their influence on prognosis. The role of other histological features in prognosis and the association between NETs and bacteria in the coronary thrombi were also explored. METHODS AND RESULTS We studied 406 patients with STEMI in which coronary thrombi were consecutively obtained by aspiration during angioplasty between 2012 and 2018. Analysis of NETs in paraffin-embedded thrombi was based on the colocalization of specific NET components by means of confocal microscopy. Immunohistochemistry stains were used to identify plaque fragments. Fluorescence in situ hybridization was used to detect bacteria. NETs were detected in 51% of the thrombi [NET density, median (IQR): 25% (17-38%)]. The median follow-up was 47 months (95% CI 43-51); 105 (26%) patients experienced major adverse cardiac events (MACE). A significant association was found between the presence of NETs in coronary aspirates and the occurrence of MACE in the first 30 days after infarction (HR 2.82; 95% CI 1.26-6.35, p=.012), mainly due to cardiac deaths and stent thrombosis. CONCLUSIONS The presence of NETs in coronary thrombi was associated with a worse prognosis soon after STEMI. In some patients, NETs could be a treatment target and a feasible way to prevent reinfarction.
Collapse
Affiliation(s)
- Ana Blasco
- Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| | - María José Coronado
- Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majalahonda, Majadahonda, Spain
| | - Paula Vela
- Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| | - Paloma Martin
- Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| | - Jorge Solano
- Consorci Hospital General Universitari de Valencia, Valencia, Spain
| | - Elvira Ramil
- Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majalahonda, Majadahonda, Spain
| | - Aina Mesquida
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Adrian Santos
- Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majalahonda, Majadahonda, Spain
| | - Beatriz Cozar
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ana Royuela
- Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majalahonda, Majadahonda, Spain
| | - Diego Garcia
- Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| | - Susana Camarzana
- Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| | - Carolina Parra
- Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| | | | - Javier Goicolea
- Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| | - Carmen Bellas
- Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| |
Collapse
|
21
|
Osipova OA, Golovin AI, Belousova ON, Zemlyansky OA, Golivets TP, Konstantinov SL. Age-associated level of myocardial fibrosis markers and chemokines in patients with acute coronary syndrome. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim. To study age-related specifics of the concentration of fibrosis markers and monocyte chemotactic protein-1 (MCP-1) in patients with ST-segment elevation acute coronary syndrome (STE-ACS).Material and methods. A total of 140 STE-ACS patients were examined. Depending on the age, participants were divided into following groups: middle age — 42 patients, elderly — 50 patients, senile — 48 patients. The control group (CG) consisted of 20 people without cardiovascular disease. The level of matrix metallopeptidase 9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), MCP-1 was determined by enzyme immunoassay. Statistical processing was carried out using the MATLAB 2020software.Results. It was found that in STE-ACS patients, the MMP-9 level in middle-aged patients is 2,9 times higher than in the CG (p<0,001), elderly — 4,1 times (p<0,001), senile — 6 times (p<0,001). A strong direct relationship was found between age and MMP-9 level (r=0,86088, p<0,001). The TIMP-1 level was higher in all patients (p<0,05) compared with CG. A strong direct relationship was found between levels of MMP-9 and TIMP-1 (r=0,7801; p<0,01). The MMP-9/TIMP-1 ratio was higher in the group of middle-aged people by 85,7% (p<0,05), elderly — 1,2 times (p<0,001), senile — 2,3 times (p<0,001) compared to CG. MCP-1 was elevated in all age groups (p <0,001). A direct correlation was found between levels of MCP-1 and MMP-9 (r=0,726, p<0,001).Conclusion. In STE-ACS patients, an age-associated increase in concentrations of MMP-9 and MMP-9/TIMP-1 ratio was found in comparison with CG, which indicates the predominance of intercellular matrix degradation marker in patients with ACS. At the same time, MMP-9 increase is possibly induced by MCP-1.
Collapse
Affiliation(s)
- O. A. Osipova
- National Research University “Belgorod State University”
| | - A. I. Golovin
- National Research University “Belgorod State University”
| | | | | | - T. P. Golivets
- National Research University “Belgorod State University”
| | | |
Collapse
|
22
|
The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection. Cells 2021; 10:cells10081891. [PMID: 34440659 PMCID: PMC8391883 DOI: 10.3390/cells10081891] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
The first formal description of the microbicidal activity of extracellular traps (ETs) containing DNA occurred in neutrophils in 2004. Since then, ETs have been identified in different populations of cells involved in both innate and adaptive immune responses. Much of the knowledge has been obtained from in vitro or ex vivo studies; however, in vivo evaluations in experimental models and human biological materials have corroborated some of the results obtained. Two types of ETs have been described—suicidal and vital ETs, with or without the death of the producer cell. The studies showed that the same cell type may have more than one ETs formation mechanism and that different cells may have similar ETs formation mechanisms. ETs can act by controlling or promoting the mechanisms involved in the development and evolution of various infectious and non-infectious diseases, such as autoimmune, cardiovascular, thrombotic, and neoplastic diseases, among others. This review discusses the presence of ETs in neutrophils, macrophages, mast cells, eosinophils, basophils, plasmacytoid dendritic cells, and recent evidence of the presence of ETs in B lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes. Moreover, due to recently collected information, the effect of ETs on COVID-19 is also discussed.
Collapse
|
23
|
Mangold A, Ondracek AS, Hofbauer TM, Scherz T, Artner T, Panagiotides N, Beitzke D, Ruzicka G, Nistler S, Wohlschläger-Krenn E, Winker R, Quehenberger P, Traxler-Weidenauer D, Spannbauer A, Gyöngyösi M, Testori C, Lang IM. Culprit site extracellular DNA and microvascular obstruction in ST-elevation myocardial infarction. Cardiovasc Res 2021; 118:2006-2017. [PMID: 34173822 DOI: 10.1093/cvr/cvab217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS Extracellular chromatin and deoxyribonuclease (DNase) have been identified as important players of thrombosis, inflammation and homeostasis in a murine model. We previously demonstrated that activated neutrophils release neutrophil extracellular traps (NETs) at the culprit site in ST elevation myocardial infarction (STEMI), which significantly contribute to extracellular chromatin burden, and are associated with larger infarcts. To understand the correlation between neutrophil activation, extracellular chromatin and infarct size (IS), we investigated these parameters in a porcine myocardial infarction model, and at different time points and sites in a prospective STEMI trial with cardiac magnetic resonance (CMR) endpoints. METHODS AND RESULTS In a prospective STEMI trial (NCT01777750), 101 STEMI patients were included and blood samples were obtained from first medical contact until 6 months after primary percutaneous coronary intervention (pPCI) including direct sampling from the culprit site. CMR was performed 4 ± 2 days and 6 months after pPCI. Neutrophil counts, markers of extracellular chromatin and inflammation were measured. Double-stranded DNA (dsDNA), citrullinated histone 3, nucleosomes, myeloperoxidase, neutrophil elastase and interleukin (IL)-6 were significantly increased, while DNase activity was significantly decreased at the culprit site in STEMI patients. High neutrophil counts and dsDNA levels at the culprit site correlated with high microvascular obstruction (MVO) and low ejection fraction (EF). High DNase activity at the culprit site correlated with low MVO and high EF.In correspondence, dsDNA correlated with IS in the porcine myocardial infarction model. In porcine infarcts, neutrophils and extracellular chromatin were detected in congested small arteries corresponding with MVO. Markers of neutrophil activation, extracellular chromatin, DNase activity and CMR measurements correlated with markers of systemic inflammation C-reactive protein and IL-6 in patients. CONCLUSIONS NETs and extracellular chromatin are important determinants of MVO in STEMI. Rapid degradation of extracellular chromatin by DNases appears to be crucial for microvascular patency and outcome. TRANSLATIONAL PERSPECTIVE We show that NETs and extracellular DNA obstruct microvessels in the porcine myocardial infarction model and is connected to increased infarct size. We are able to prove this observation in human STEMI patients. DNase is capable to counteract these effects. Extracellular DNA could be a new treatment target in STEMI.
Collapse
Affiliation(s)
- Andreas Mangold
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - Anna S Ondracek
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - Thomas M Hofbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - Thomas Scherz
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria.,Department of Dermatology, Landesklinikum Wiener, Neustadt, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - Noel Panagiotides
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-guided therapy, Medical University of Vienna, Austria
| | - Gerhard Ruzicka
- Department of Emergency Medicine, Medical University of Vienna, Austria
| | - Sonja Nistler
- Center of Prevention and Health, Sanatorium Hera, Vienna, Austria
| | | | - Robert Winker
- Center of Prevention and Health, Sanatorium Hera, Vienna, Austria
| | - Peter Quehenberger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Andreas Spannbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - Christoph Testori
- Department of Emergency Medicine, Medical University of Vienna, Austria.,Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener, Neustadt, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| |
Collapse
|
24
|
Blanch-Ruiz MA, Ortega-Luna R, Martínez-Cuesta MÁ, Álvarez Á. The Neutrophil Secretome as a Crucial Link between Inflammation and Thrombosis. Int J Mol Sci 2021; 22:4170. [PMID: 33920656 PMCID: PMC8073391 DOI: 10.3390/ijms22084170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases are a leading cause of death. Blood-cell interactions and endothelial dysfunction are fundamental in thrombus formation, and so further knowledge of the pathways involved in such cellular crosstalk could lead to new therapeutical approaches. Neutrophils are secretory cells that release well-known soluble inflammatory signaling mediators and other complex cellular structures whose role is not fully understood. Studies have reported that neutrophil extracellular vesicles (EVs) and neutrophil extracellular traps (NETs) contribute to thrombosis. The objective of this review is to study the role of EVs and NETs as key factors in the transition from inflammation to thrombosis. The neutrophil secretome can promote thrombosis due to the presence of different factors in the EVs bilayer that can trigger blood clotting, and to the release of soluble mediators that induce platelet activation or aggregation. On the other hand, one of the main pathways by which NETs induce thrombosis is through the creation of a scaffold to which platelets and other blood cells adhere. In this context, platelet activation has been associated with the induction of NETs release. Hence, the structure and composition of EVs and NETs, as well as the feedback mechanism between the two processes that causes pathological thrombus formation, require exhaustive analysis to clarify their role in thrombosis.
Collapse
Affiliation(s)
- María Amparo Blanch-Ruiz
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
| | - María Ángeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| |
Collapse
|
25
|
Wilson SE. Interleukin-1 and Transforming Growth Factor Beta: Commonly Opposing, but Sometimes Supporting, Master Regulators of the Corneal Wound Healing Response to Injury. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 33825855 PMCID: PMC8039470 DOI: 10.1167/iovs.62.4.8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Interleukin (IL)-1α/IL-1β and transforming growth factor (TGF)β1/TGFβ2 have both been promoted as “master regulators” of the corneal wound healing response due to the large number of processes each regulates after injury or infection. The purpose of this review is to highlight the interactions between these systems in regulating corneal wound healing. Methods We conducted a systematic review of the literature. Results Both regulator pairs bind to receptors expressed on keratocytes, corneal fibroblasts, and myofibroblasts, as well as bone marrow-derived cells that include fibrocytes. IL-1α and IL-1β modulate healing functions, such as keratocyte apoptosis, chemokine production by corneal fibroblasts, hepatocyte growth factor (HGF), and keratinocyte growth factor (KGF) production by keratocytes and corneal fibroblasts, expression of metalloproteinases and collagenases by corneal fibroblasts, and myofibroblast apoptosis. TGFβ1 and TGFβ2 stimulate the development of myofibroblasts from keratocyte and fibrocyte progenitor cells, and adequate stromal levels are requisite for the persistence of myofibroblasts. Conversely, TGFβ3, although it functions via the same TGF beta I and II receptors, may, at least in some circumstances, play a more antifibrotic role—although it also upregulates the expression of many profibrotic genes. Conclusions The overall effects of these two growth factor-cytokine-receptor systems in controlling the corneal wound healing response must be coordinated during the wound healing response to injury or infection. The activities of both systems must be downregulated in coordinated fashion to terminate the response to injury and eliminate fibrosis. Translational Relevance A better standing of the IL-1 and TGFβ systems will likely lead to better approaches to control the excessive healing response to infections and injuries leading to scarring corneal fibrosis.
Collapse
Affiliation(s)
- Steven E Wilson
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|