1
|
Xu L, Shi F, Wu Y, Yao S, Wang Y, Jiang X, Su L, Liu X. Gasdermin E regulates the stability and activation of EGFR in human non-small cell lung cancer cells. Cell Commun Signal 2023; 21:83. [PMID: 37085908 PMCID: PMC10120120 DOI: 10.1186/s12964-023-01083-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Lung cancer is the most lethal malignancy, with non-small cell lung cancer (NSCLC) being the most common type (~ 85%). Abnormal activation of epidermal growth factor receptor (EGFR) promotes the development of NSCLC. Chemoresistance to tyrosine kinase inhibitors, which is elicited by EGFR mutations, is a key challenge for NSCLC treatment. Therefore, more thorough understanding of EGFR expression and dynamics are needed. METHODS Human non-small cell lung cancer cells and HEK293FT cells were used to investigate the molecular mechanism of gasdermin E (GSDME) regulating EGFR stability by Western blot analysis, immunoprecipitation and immunofluorescence. GSDME and EGFR siRNAs or overexpression plasmids were used to characterize the functional role of GSDME and EGFR in vitro. EdU incorporation, CCK-8 and colony formation assays were used to determine the proliferation ability of non-small cell lung cancer cells. RESULTS GSDME depletion reduced the proliferation of non-small cell lung cancer cells in vitro. Importantly, both GSDME-full length (GSDME-FL) and GSDME-N fragment physically interacted with EGFR. GSDME interacted with cytoplasmic fragment of EGFR. GSDME knockdown inhibited EGFR dimerization and phosphorylation at tyrosine 1173 (EGFRY1173), which activated ERK1/2. GSDME knockdown also promoted phosphorylation of EGFR at tyrosine 1045 (EGFRY1045) and its degradation. CONCLUSION These results indicate that GSDME-FL increases the stability of EGFR, while the GSDME N-terminal fragment induces EGFR degradation. The GSDME-EGFR interaction plays an important role in non-small cell lung cancer development, reveal a previously unrecognized link between GSDME and EGFR stability and offer new insight into cancer pathogenesis. Video abstract.
Collapse
Affiliation(s)
- Limei Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-108, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Feifei Shi
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-108, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Yingdi Wu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-108, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Shun Yao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-108, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Yingying Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-108, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-108, 72 Binhai Road, Qingdao, 266237, People's Republic of China.
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-108, 72 Binhai Road, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
2
|
Roshani M, Baniebrahimi G, Mousavi M, Zare N, Sadeghi R, Salarinia R, Sheida A, Molavizadeh D, Sadeghi S, Moammer F, Zolfaghari MR, Mirzaei H. Exosomal long non-coding RNAs: novel molecules in gastrointestinal cancers' progression and diagnosis. Front Oncol 2022; 12:1014949. [PMID: 36591473 PMCID: PMC9795196 DOI: 10.3389/fonc.2022.1014949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GI) cancers arise in the GI tract and accessory organs, including the mouth, esophagus, stomach, liver, biliary tract, pancreas, small intestine, large intestine, and rectum. GI cancers are a major cause of cancer-related morbidity and mortality worldwide. Exosomes act as mediators of cell-to-cell communication, with pleiotropic activity in the regulation of homeostasis, and can be markers for diseases. Non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs), can be transported by exosomes derived from tumor cells or non-tumor cells. They can be taken by recipient cells to alter their function or remodel the tumor microenvironment. Moreover, due to their uniquely low immunogenicity and excellent stability, exosomes can be used as natural carriers for therapeutic ncRNAs in vivo. Exosomal lncRNAs have a crucial role in regulating several cancer processes, including angiogenesis, proliferation, drug resistance, metastasis, and immunomodulation. Exosomal lncRNA levels frequently alter according to the onset and progression of cancer. Exosomal lncRNAs can therefore be employed as biomarkers for the diagnosis and prognosis of cancer. Exosomal lncRNAs can also monitor the patient's response to chemotherapy while also serving as potential targets for cancer treatment. Here, we discuss the role of exosomal lncRNAs in the biology and possible future treatment of GI cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mousavi
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Noushid Zare
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Reza Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Moammer
- Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Hamed Mirzaei
- Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Ebrahimi N, Faghihkhorasani F, Fakhr SS, Moghaddam PR, Yazdani E, Kheradmand Z, Rezaei-Tazangi F, Adelian S, Mobarak H, Hamblin MR, Aref AR. Tumor-derived exosomal non-coding RNAs as diagnostic biomarkers in cancer. Cell Mol Life Sci 2022; 79:572. [PMID: 36308630 PMCID: PMC11802992 DOI: 10.1007/s00018-022-04552-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
Abstract
Almost all clinical oncologists agree that the discovery of reliable, accessible, and non-invasive biomarkers is necessary to decrease cancer mortality. It is possible to employ reliable biomarkers to diagnose cancer in the early stages, predict the patient prognosis, follow up the response to treatment, and estimate the risk of disease recurrence with high sensitivity and specificity. Extracellular vesicles (EVs), especially exosomes, have been the focus of translational research to develop such biomarkers over the past decade. The abundance and distribution of exosomes in bodily fluids, including serum, saliva, and urine, as well as their ability to transport various biomolecules (nucleic acids, proteins, and lipids) derived from their parent cells, make exosomes reliable, accessible, and potent biomarkers for diagnosis and follow-up of solid and hematopoietic tumors. In addition, exosomes play a vital role in various cellular processes, including tumor progression, by participating in intercellular communication. Although these advantages underline the high potential of tumor-derived exosomes as diagnostic biomarkers, the lack of standardized effective methods for their isolation, identification, and precise characterization makes their application challenging in clinical settings. We discuss the importance of non-coding RNAs (ncRNAs) in cellular processes, and the role of tumor-derived exosomes containing ncRNAs as potential biomarkers in several types of cancer. In addition, the advantages and challenges of these studies for translation into clinical applications are covered.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | - Parichehr Roozbahani Moghaddam
- Department of Molecular Genetics, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tehran, Mazandaran, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Kheradmand
- Department of Agriculture, Islamic Azad University Maragheh Branch, Maragheh, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
4
|
Chen Z, Yuan L, Li X, Yu J, Xu Z. BMP2 inhibits cell proliferation by downregulating EZH2 in gastric cancer. Cell Cycle 2022; 21:2298-2308. [PMID: 35856444 DOI: 10.1080/15384101.2022.2092819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gastric cancer is among the most common gastrointestinal malignancies. Recent studies have suggested that bone morphogenetic protein-2 (BMP2) is related to the development and progression of various cancers. Meanwhile, evidence suggests that BMP2 might lead to epigenetic changes in gastric cancer. Thus, we investigated whether BMP2 plays a role in the development of gastric cancer via epigenetic regulation. Cell viability, colony formation, and cell cycle assays were performed to assess the effect of recombinant human BMP2 (rhBMP2) in gastric cancer cells. LDN-193189 and Noggins were used as antagonists of the canonical BMP-SMAD signaling pathway. The protein levels were determined using a western blot analysis. Lentiviral vectors with EZH2 shRNA or EZH2 overexpression were used to mediate the role of EZH2 and the relationship between BMP2 and EZH2 in gastric cancer. We found that rhBMP2 inhibits cell proliferation by arresting the cell cycle in HGC-27 and SNU-216 gastric cancer cells. Neither LDN-193189 nor Noggins, antagonists of the canonical BMP-SMAD signaling pathway, can reverse the effect of rhBMP2 on gastric cancer. Molecularly, rhBMP2 downregulates the expression of EZH2 and H3K27me3, leading to increases in P16 and P21 and decreases in CDK2, CDK4, and CDK6. Altogether, in this study, we demonstrate that BMP2 serves as a tumor suppressor in gastric cancer cells by downregulating EZH2 and H3K27me3 through the non-SMAD BMP pathway, suggesting that BMP2 might be a new therapeutic target for gastric cancer treatment. Abbreviations: BMP: bone morphogenetic protein; TGF-β: transforming growth factor-beta; EZH2: enhancer of zeste homolog 2; H3K27me3: trimethylation histone H3 lysine 27; HRECs: human retinal endothelial cells; PcG: polycomb group; PRC: polycomb repressive complexes.
Collapse
Affiliation(s)
- Zilu Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liyue Yuan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Wang Q, Zhang C, Cao S, Zhao H, Jiang R, Li Y. Tumor-derived exosomes orchestrate the microRNA-128-3p/ELF4/CDX2 axis to facilitate the growth and metastasis of gastric cancer via delivery of LINC01091. Cell Biol Toxicol 2022:10.1007/s10565-022-09728-y. [PMID: 35674868 DOI: 10.1007/s10565-022-09728-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
It has been manifested that tumor-derived exosomes (Exos) can deliver long noncoding RNAs to participate in gastric cancer (GC) progression. In this research, we intended to dissect out whether tumor-derived Exos carried LINC01091 to afflict the growth and metastasis of GC. GC tissues and human GC cells were attained for RNA and protein quantification. Accordingly, LINC01091, ELF4, and CDX2 were abundant but microRNA (miR)-128-3p was underexpressed in GC tissues and cells. Exos were isolated from LINC01091-silenced GC cells (Exo-sh-LINC01091). GC cells were co-cultured with Exo-sh-LINC01091 or manipulated with miR mimic, inhibitor, or overexpressing or silencing plasmids. Exo-sh-LINC01091, LINC01091, ELF4 or CDX2 silencing, or miR-128-3p upregulation augmented GC cell proliferative, migrating, and invasive properties. In addition, luciferase, RNA pull-down, and ChIP assays offered evidence supporting the mechanism that LINC01091 bound to miR-128-3p that inversely targeted ELF4, and ELF4 transcriptionally activated CDX2 by binding to its promoter in GC cells. Moreover, Exo-sh-LINC01091 modulated the miR-128-3p/ELF4/CDX2 axis and restrained the tumorigenesis and metastasis in vivo. Conclusively, LINC01091 shuttled by tumor-derived Exos might expedite GC development by activating the ELF4/CDX2 axis via miR-128-3p downregulation.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Radiotherapy, Xuzhou Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou, 221005, People's Republic of China
| | - Chunmei Zhang
- Department of Medical Oncology, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shengya Cao
- Clinical Laboratory, Xuzhou Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou, 221005, People's Republic of China
| | - Hongying Zhao
- Department of Medical Oncology, Xuzhou Cancer Hospital, Xuzhou Third People's Hospital, No. 131, Huancheng Road, Xuzhou, 221005, People's Republic of China.
| | - Rongke Jiang
- Department of Hematology and Oncology, Xuzhou Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou, 221005, People's Republic of China
| | - Yanfang Li
- Department of Medical Oncology, Xuzhou Cancer Hospital, Xuzhou Third People's Hospital, No. 131, Huancheng Road, Xuzhou, 221005, People's Republic of China
| |
Collapse
|
6
|
Kang F, Jiang F, Ouyang L, Wu S, Fu C, Liu Y, Li Z, Tian Y, Cao X, Wang X, He Q. Potential Biological Roles of Exosomal Long Non-Coding RNAs in Gastrointestinal Cancer. Front Cell Dev Biol 2022; 10:886191. [PMID: 35602607 PMCID: PMC9114804 DOI: 10.3389/fcell.2022.886191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes, a type of extracellular vesicles (EVs), are secreted by almost all cells and contain many cellular constituents, such as nucleic acids, lipids, and metabolites. In addition, they play a crucial role in intercellular communication and have been proved to be involved in the development and treatment of gastrointestinal cancer. It has been confirmed that long non-coding RNAs (lncRNAs) exert a range of biological functions, such as cell metastasis, tumorigenesis, and therapeutic responses. This review mainly focused on the emerging roles and underlying molecular mechanisms of exosome-derived lncRNAs in gastrointestinal cancer in recent years. The biological roles of exosomal lncRNAs in the pathogenesis and therapeutic responses of gastrointestinal cancers were also investigated.
Collapse
Affiliation(s)
- Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Feng Jiang
- Department of Medicine, Xizang Minzu University, Xianyang, China
| | - Lingzi Ouyang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Shangjun Wu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Chencheng Fu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Ying Liu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Zhilan Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yu Tian
- Department of Medicine, Xizang Minzu University, Xianyang, China
| | - Xiaolan Cao
- Department of Medicine, Xizang Minzu University, Xianyang, China
| | - Xiaoping Wang
- Department of Medicine, Xizang Minzu University, Xianyang, China
| | - Qingchun He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency, Xiangya Changde Hospital, Changde, China
| |
Collapse
|
7
|
Sun S, Yu F, Xu D, Zheng H, Li M. EZH2, a prominent orchestrator of genetic and epigenetic regulation of solid tumor microenvironment and immunotherapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188700. [PMID: 35217116 DOI: 10.1016/j.bbcan.2022.188700] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023]
Abstract
Immune checkpoint blockade (ICB) is regarded as a promising strategy for cancer therapy. The histone methyltransferase, Enhancer of Zeste Homolog 2 (EZH2), has been implicated in the carcinogenesis of numerous solid tumors. However, the underlying mechanism of EZH2 in cancer immunotherapeutic resistance remains unknown. EZH2 orchestrates the regulation of the innate and adaptive immune systems of the tumor microenvironment (TME). Profound epigenetic and transcriptomic changes induced by EZH2 in tumor cells and immune cells mobilize the elements of the TME, leading to immune-suppressive activity of solid tumors. In this review, we summarized the dynamic functions of EZH2 on the different components of the TME, including tumor cells, T cells, macrophages, natural killer cells, myeloid-derived suppressor cells, dendritic cells, fibroblasts, and mesenchymal stem cells. Several ongoing anti-tumor clinical trials using EZH2 inhibitors have also been included as translational perspectives. In conclusion, based combinational therapy to enable ICB could offer a survival benefit in patients with cancer.
Collapse
Affiliation(s)
- Shanshan Sun
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Cancer Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Feng Yu
- Cancer Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danying Xu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Cancer Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haiyan Zheng
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Min Li
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America.
| |
Collapse
|
8
|
Yang Q, Chen Y, Guo R, Dai Y, Tang L, Zhao Y, Wu X, Li M, Du F, Shen J, Yi T, Xiao Z, Wen Q. Interaction of ncRNA and Epigenetic Modifications in Gastric Cancer: Focus on Histone Modification. Front Oncol 2022; 11:822745. [PMID: 35155211 PMCID: PMC8826423 DOI: 10.3389/fonc.2021.822745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer has developed as a very common gastrointestinal tumors, with recent effective advancements in the diagnosis and treatment of early gastric cancer. However, the prognosis for gastric cancer remains poor. As a result, there is in sore need of better understanding the mechanisms of gastric cancer development and progression to improve existing diagnostic and treatment options. In recent years, epigenetics has been recognized as an important contributor on tumor progression. Epigenetic changes in cancer include chromatin remodeling, DNA methylation and histone modifications. An increasing number of studies demonstrated that noncoding RNAs (ncRNAs) are associated with epigenetic changes in gastric cancer. Herein, we describe the molecular interactions of histone modifications and ncRNAs in epigenetics. We focus on ncRNA-mediated histone modifications of gene expression associated with tumorigenesis and progression in gastric cancer. This molecular mechanism will contribute to our deeper understanding of gastric carcinogenesis and progression, thus providing innovations in gastric cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Yueshui Zhao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Xu Wu
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Mingxing Li
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Jing Shen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
9
|
Li C, Ni YQ, Xu H, Xiang QY, Zhao Y, Zhan JK, He JY, Li S, Liu YS. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Qun-Yan Xiang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Kun Zhan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jie-Yu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
10
|
Xia Z, Qing B, Wang W, Gu L, Chen H, Yuan Y. Formation, contents, functions of exosomes and their potential in lung cancer diagnostics and therapeutics. Thorac Cancer 2021; 12:3088-3100. [PMID: 34734680 PMCID: PMC8636224 DOI: 10.1111/1759-7714.14217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide due to diagnosis in the advanced stage and drug resistance in the subsequent treatments. Development of novel diagnostic and therapeutic methods is urged to improve the disease outcome. Exosomes are nano-sized vehicles which transport different types of biomolecules intercellularly, including DNA, RNA and proteins, and are implicated in cross-talk between cells and their surrounding microenvironment. Tumor-derived exosomes (TEXs) have been revealed to strongly influence the tumor microenvironment, antitumor immunoregulatory activities, tumor progression and metastasis. Potential of TEXs as biomarkers for lung cancer diagnosis, prognosis and treatment prediction is supported by numerous studies. Moreover, exosomes have been proposed to be promising drug carriers. Here, we review the mechanisms of exosomal formation and uptake, the functions of exosomes in carcinogenesis, and potential clinical utility of exosomes as biomarkers, tumor vaccine and drug delivery vehicles in the diagnosis and therapeutics of lung cancer.
Collapse
Affiliation(s)
- Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Linguo Gu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongzuo Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Xin L, Wu Y, Liu C, Zeng F, Wang JL, Wu DZ, Wu JP, Yue ZQ, Gan JH, Lu H, Yuan YW, Zhou LQ. Exosome-mediated transfer of lncRNA HCG18 promotes M2 macrophage polarization in gastric cancer. Mol Immunol 2021; 140:196-205. [PMID: 34735868 DOI: 10.1016/j.molimm.2021.10.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gastric cancer (GC) derived exosomes (Exos) aggravate GC development by facilitating M2 macrophage polarization and long non-coding RNA (lncRNA) HCG18 was highly expressed in GC. This study aimed to investigate whether the exosomal lncRNA HCG18 regulated the M2 macrophage polarization in GC and the possible mechanism. METHODS The isolated GC cells (GCCs)-Exos were identified using transmission electron microscopy, Nanoparticle Tracking Analysis and Western blot. The GCCs-Exos function was verified by enzyme-linked immunosorbent assay and flow cytometry. Meanwhile, the exosomal lncRNA HCG18 function was determined using thein vitro assays. Furthermore, the underlying mechanism of the exosomal lncRNA HCG18 that regulated M2 macrophage polarization in GC was investigated using dual-luciferase reporter gene assay and RNA pull-down. RESULTS After the validation of GCCs-Exos, the GCCs-Exos facilitated the M2 macrophage polarization. The in vitro assays confirmed that the exosomal lncRNA HCG18 positively regulated the M2 macrophage polarization. Mechanistically, lncRNA HCG18 bound to miR-875-3p, miR-875-3p bound to KLF4. Furthermore, GCCs-exosomal lncRNA HCG18 elevated the KLF4 expression by decreasing miR-875-3p in macrophages to facilitate M2 macrophage polarization, thus alleviating GC. The in vivo assays clarified that the GCCs-exosomal lncRNA HCG18 restrained the tumor growth of GC induced by M2 macrophages. CONCLUSION GCCs-exosomal lncRNA HCG18 elevated KLF4 expression by decreasing miR-875-3p in macrophages to facilitate the M2 macrophage polarization.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - You Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Chuan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Fei Zeng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jin-Liang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Deng-Zhong Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Ji-Ping Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhen-Qi Yue
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jin-Heng Gan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Hao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Li-Qiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| |
Collapse
|
12
|
Lu L, Fang S, Zhang Y, Jin L, Xu W, Liang Z. Exosomes and Exosomal circRNAs: The Rising Stars in the Progression, Diagnosis and Prognosis of Gastric Cancer. Cancer Manag Res 2021; 13:8121-8129. [PMID: 34737640 PMCID: PMC8558314 DOI: 10.2147/cmar.s331221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is a common malignant tumor affecting human health, with occult onset and poor prognosis. Exosomes are extracellular vesicles secreted by almost all cells, which can reflect the state of source cells or tissues. It is reported that exosomes are involved in almost all processes of GC. Exosomes provided a window to understand changes in cell or tissue states by carrying active components such as circular RNAs (circRNAs). CircRNAs are a naturally occurring class of endogenous noncoding RNAs and abnormal expression during the occurrence and development of GC. Exosomal circRNAs are those circRNAs stably existing in exosomes and having high clinical values as novel potential diagnosis and prognosis biomarkers of GC, which have the characteristics of abnormal expression, tissue specificity and development stage specificity. Herein, we briefly summarize the functions and roles and the current research progress of exosomes and exosomal circRNAs in GC with a focus on the potential application for GC progression, diagnosis and prognosis. We also prospected the clinical application of exosomes and exosomal circRNAs in the future.
Collapse
Affiliation(s)
- Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, People’s Republic of China
| | - Shikun Fang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Longtao Jin
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, People’s Republic of China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| |
Collapse
|
13
|
Exosome long non-coding RNA SOX2-OT contributes to ovarian cancer malignant progression by miR-181b-5p/SCD1 signaling. Aging (Albany NY) 2021; 13:23726-23738. [PMID: 34690112 PMCID: PMC8580347 DOI: 10.18632/aging.203645] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/11/2021] [Indexed: 01/20/2023]
Abstract
Ovarian cancer is a common gynecologic cancer with increased mortality and morbidity. Exosome-delivered long non-coding RNAs have been well found in cancer development. However, the function of exosomal SOX2-OT in ovarian cancer development is still unreported. In the present study, we were interested in the investigation of the effect of exosomal SOX2-OT during ovarian cancer pathogenesis. Significantly, we revealed that the SOX2-OT expression levels were up-regulated in the ovarian cancer patients' plasma exosomes. The depletion of exosomal SOX2-OT inhibited migration, invasion, and proliferation and induced apoptosis in ovarian cancer cells. In mechanical exploration, SOX2-OT could sponge miR-181b-5p, and miR-181b-5p was able to target SCD1 in the ovarian cancer cells. The SCD1 overexpression and miR-181b-5p inhibitor could reverse exosomal SOX2-OT-mediated ovarian cancer progression. Functionally, the depletion of exosomal SOX2-OT significantly reduced tumor growth of ovarian cancer cells in vivo. In summary, we concluded that exosomal SOX2-OT enhanced ovarian cancer malignant phenotypes by miR-181b-5p/SCD1 axis. Our finding presents novel insights into the mechanism by which exosomal lncRNA SOX2-OT promotes ovarian cancer progression. SOX2-OT, miR-181b-5p, and SCD1 may serve as potential targets for the treatment of ovarian cancer.
Collapse
|
14
|
Wang C, Zhao D, Shu X, Wang K, Wang T, Lin X, Zhang D, Xia T, Qian S, Tang M, Yang W, Hu A, Zhao Q. Protective effects of all-trans retinoic acid against gastric premalignant lesions by repressing exosomal LncHOXA10-pyruvate carboxylase axis. J Cancer Res Clin Oncol 2021; 148:121-135. [PMID: 34632533 DOI: 10.1007/s00432-021-03820-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Long noncoding RNAs (LncRNAs) play a pivotal role in gastric tumorigenesis, while exosomes facilitate the LncRNAs transferring to recipient cells. However, the roles of exosomal LncRNAs in gastric premalignant lesions (GPL) remain unclear. METHODS We analyzed the expression of LncHOXA10 and its role in GPL progression. The protective effect of all-trans retinoic acid (ATRA) on GPL was explored in vitro and in vivo. RESULTS Here, we found that LncHOXA10 expression was obviously increased in serum exosomes and gastric tissues from individuals with GPL, and exosomal LncHOXA10 from patients with GPL markedly promoted the malignant progression of human gastric epithelial cell line GES-1. Furthermore, RNA-pulldown assay revealed that LncHOXA10 mainly interacted with pyruvate carboxylase (PC), an essential enzyme in various cellular metabolic pathways. In gastric tissues from patients with GPL and gastric cancer (GC), PC was also upregulated and positively correlated with LncHOXA10 expression, which predicted a poor prognosis as well. Moreover, PC silencing attenuated the malignant effects of exosomal LncHOXA10 on GES-1 cells. ATRA also ameliorated the deterioration of GPL and prevented the malignant progression of GPL by reducing exosomal LncHOXA10 and PC expression. CONCLUSIONS Collectively, the LncHOXA10-PC axis participated in the early stage of GC tumorigenesis, and ATRA might be useful to prevent GPL from developing into GC because it targets this axis.
Collapse
Affiliation(s)
- Chen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Didi Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xing Shu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Kexin Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiao Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Daoming Zhang
- Department of Gastroenterology, Lujiang County People's Hospital, Hefei, Anhui, China
| | - Tao Xia
- Department of Gastroenterology, Lujiang County People's Hospital, Hefei, Anhui, China
| | - Shiqing Qian
- Department of Pathology, Lujiang County People's Hospital, Hefei, Anhui, China
| | - Min Tang
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China.
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Tang XH, Guo T, Gao XY, Wu XL, Xing XF, Ji JF, Li ZY. Exosome-derived noncoding RNAs in gastric cancer: functions and clinical applications. Mol Cancer 2021; 20:99. [PMID: 34330299 PMCID: PMC8323226 DOI: 10.1186/s12943-021-01396-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a subpopulation of the tumour microenvironment (TME) that transmit various biological molecules to promote intercellular communication. Exosomes are derived from nearly all types of cells and exist in all body fluids. Noncoding RNAs (ncRNAs) are among the most abundant contents in exosomes, and some ncRNAs with biological functions are specifically packaged into exosomes. Recent studies have revealed that exosome-derived ncRNAs play crucial roles in the tumorigenesis, progression and drug resistance of gastric cancer (GC). In addition, regulating the expression levels of exosomal ncRNAs can promote or suppress GC progression. Moreover, the membrane structures of exosomes protect ncRNAs from degradation by enzymes and other chemical substances, significantly increasing the stability of exosomal ncRNAs. Specific hallmarks within exosomes that can be used for exosome identification, and specific contents can be used to determine their origin. Therefore, exosomal ncRNAs are suitable for use as diagnostic and prognostic biomarkers or therapeutic targets. Regulating the biogenesis of exosomes and the expression levels of exosomal ncRNAs may represent a new way to block or eradicate GC. In this review, we summarized the origins and characteristics of exosomes and analysed the association between exosomal ncRNAs and GC development.
Collapse
Affiliation(s)
- Xiao-Huan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.,Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China
| | - Xiang-Yu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.,Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China
| | - Xiao-Long Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.,Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China. .,Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.
| | - Zi-Yu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China. .,Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.
| |
Collapse
|
16
|
Zhang H, Yang M, Wu X, Li Q, Li X, Zhao Y, Du F, Chen Y, Wu Z, Xiao Z, Shen J, Wen Q, Hu W, Cho CH, Chen M, Zhou Y, Li M. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment. Pharmacol Res 2021; 171:105785. [PMID: 34311072 DOI: 10.1016/j.phrs.2021.105785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) development is a complex process displaying polytropic cell and molecular landscape within gastric tumor microenvironment (TME). Stromal cells in TME, including fibroblasts, endothelial cells, mesenchymal stem cells, and various immune cells, support tumor growth, metastasis, and recurrence, functioning as the soil for gastric tumorigenesis. Importantly, exosomes secreted by either stromal cells or tumor cells during tumor-stroma crosstalk perform as crucial transporter of agents including RNAs and proteins for cell-cell communication in GC pathogenesis. Therefore, given the distinct roles of exosomes secreted by various cell types in GC TME, increasing evidence has indicated that exosomes present as new biomarkers for GC diagnosis and prognosis and shed light on novel approaches for GC treatment.
Collapse
Affiliation(s)
- Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Min Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
17
|
Luo J, Xiang H. LncRNA MYLK-AS1 acts as an oncogene by epigenetically silencing large tumor suppressor 2 (LATS2) in gastric cancer. Bioengineered 2021; 12:3101-3112. [PMID: 34181498 PMCID: PMC8806516 DOI: 10.1080/21655979.2021.1944019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Extensive studies showed the vital function of long noncoding RNAs (lncRNAs) in the pathological and physiological progression of tumors. Previous evidence has indicated that lncRNA MYLK Antisense RNA 1 (MYLK-AS1) acts as an oncogene to facilitate the progression of several tumors. Nevertheless, little is known about its biological role in gastric cancer (GC). Our report intended to probe the underlying mechanism and function of MYLK-AS1 in GC. Results revealed that MYLK-AS1 showed an upregulated level in GC. It was worth mentioning that upregulated MYLK-AS1 caused the unfavorable clinical outcome in GC patients. Functional assays indicated that MYLK-AS1 silencing retarded the proliferation, cell cycle, migration, and invasion in GC. Besides, in vivo assay validated that MYLK-AS1 deficiency also restrained tumor growth. Through in-depth mechanism exploration, MYLK-AS1 was uncovered to bind with wnhancer of zeste homolog 2 (EZH2), an epigenetic inhibitor, to inhibit the level of Large Tumor Suppressor 2 (LATS2), thereby exerting carcinogenicity. Conclusively, our research highlighted the importance of MYLK-AS1 in GC, indicating that MYLK-AS1 might be an effective biomarker for GC.![]() ![]()
Collapse
Affiliation(s)
- Juan Luo
- Department of Gastroenterology, Huaihua First People's Hospital, Huaihua, P.R. China
| | - Huifei Xiang
- Department of General Surgery, Huaihua First People's Hospital, Huaihua, P.R. China
| |
Collapse
|
18
|
Hu F, Liu J, Liu H, Li F, Wan M, Zhang M, Jiang Y, Rao M. Role of Exosomal Non-coding RNAs in Gastric Cancer: Biological Functions and Potential Clinical Applications. Front Oncol 2021; 11:700168. [PMID: 34195097 PMCID: PMC8238120 DOI: 10.3389/fonc.2021.700168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is one of the most common fatal cancers worldwide. The communication between GC and other cells in the GC microenvironment directly affects GC progression. Recently, exosomes have been revealed as new players in intercellular communication. They play an important role in human health and diseases, including cancer, owing to their ability to carry various bioactive molecules, including non-coding RNAs (ncRNAs). NcRNAs, including micro RNAs, long non-coding RNAs, and circular RNAs, play a significant role in various pathophysiological processes, especially cancer. Increasing evidence has shown that exosomal ncRNAs are involved in the regulation of tumor proliferation, invasion, metastasis, angiogenesis, immune regulation, and treatment resistance in GC. In addition, exosomal ncRNAs have promising potential as diagnostic and prognostic markers for GC. Considering the biocompatibility of exosomes, they can also be used as biological carriers for targeted therapy. This review summarizes the current research progress on exosomal ncRNAs in gastric cancer, focusing on their biological role in GC and their potential as new biomarkers for GC and therapeutics. Our review provides insight into the mechanisms involved in GC progression, which may provide a new point cut for the discovery of new diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Feng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jixuan Liu
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Huibo Liu
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Minjie Wan
- Department of Central Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Manli Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Min Rao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Wu H, Fu M, Liu J, Chong W, Fang Z, Du F, Liu Y, Shang L, Li L. The role and application of small extracellular vesicles in gastric cancer. Mol Cancer 2021; 20:71. [PMID: 33926452 PMCID: PMC8081769 DOI: 10.1186/s12943-021-01365-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) is a common tumour that affects humans worldwide, is highly malignant and has a poor prognosis. Small extracellular vesicles (sEVs), especially exosomes, are nanoscale vesicles released by various cells that deliver bioactive molecules to recipient cells, affecting their biological characteristics, changing the tumour microenvironment and producing long-distance effects. In recent years, many studies have clarified the mechanisms by which sEVs function with regard to the initiation, progression, angiogenesis, metastasis and chemoresistance of GC. These molecules can function as mediators of cell-cell communication in the tumour microenvironment and might affect the efficacy of immunotherapy. Due to their unique physiochemical characteristics, sEVs show potential as effective antitumour vaccines as well as drug carriers. In this review, we summarize the roles of sEVs in GC and highlight the clinical application prospects in the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Mengdi Fu
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Wei Chong
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Zhen Fang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Fengying Du
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yang Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| |
Collapse
|