1
|
Warda M, Tekin S, Gamal M, Khafaga N, Çelebi F, Tarantino G. Lipid rafts: novel therapeutic targets for metabolic, neurodegenerative, oncological, and cardiovascular diseases. Lipids Health Dis 2025; 24:147. [PMID: 40247292 PMCID: PMC12004566 DOI: 10.1186/s12944-025-02563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Lipid rafts are specialized microdomains within cellular membranes enriched with cholesterol and sphingolipids that play key roles in cellular organization, signaling, and homeostasis. This review highlights their involvement in protein clustering, energy metabolism, oxidative stress responses, inflammation, autophagy, and apoptosis. These findings clarify their influence on signaling, trafficking, and adhesion while interacting with the extracellular matrix, cytoskeleton, and ion channels, making them pivotal in the progression of various diseases. This review further addresses their contributions to immune responses, including autoimmune diseases, chronic inflammation, and cytokine storms. Additionally, their role as entry points for pathogens has been demonstrated, with raft-associated receptors being exploited by viruses and bacteria to increase infectivity and evade immune defenses. Disruptions in lipid raft dynamics are linked to oxidative stress and cellular signaling defects, which contribute to metabolic, neurodegenerative, and cardiovascular diseases. This review underscores their potential as therapeutic targets, discussing innovations such as engineered lipid raft transplantation. Advances in analytical techniques such as mass spectrometry have expanded our understanding of lipid raft composition and dynamics, opening new directions for research. By consolidating the current insights, we highlight the therapeutic potential of lipid rafts and highlight the need for further exploration of their molecular mechanisms.
Collapse
Affiliation(s)
- Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mahmoud Gamal
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nagwa Khafaga
- Food Hygiene Department, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Egypt
| | - Fikret Çelebi
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy.
| |
Collapse
|
2
|
Blawitzki LC, Monzel C, Schmidt S, Hartmann L. Selective Glycan Presentation in Liquid-Ordered or -Disordered Membrane Phases and its Effect on Lectin Binding. Angew Chem Int Ed Engl 2025; 64:e202414847. [PMID: 39412184 DOI: 10.1002/anie.202414847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 11/14/2024]
Abstract
Glycan-protein interactions play a key role in various biological processes from fertilization to infections. Many of these interactions take place at the glycocalyx-a heavily glycosylated layer at the cell surface. Despite its significance, studying the glycocalyx remains challenging due to its complex, dynamic, and heterogeneous nature. This study introduces a glycocalyx model allowing for the first time to control spatial organization and heterogeneity of the glycan moieties. Glycan-mimetics with lipid-moieties that partition into either liquid-ordered (Lo, lipid rafts) or liquid-disordered (Ld) phases of giant unilamellar vesicles (GUVs), which serve as simplified cell membrane models mimicking lipid rafts, are developed. This phase-specific allocation allows controlled placement of glycan motifs in distinct membrane environments, creating heteromultivalent systems that replicate the natural glycocalyx's complexity. We show that phase localization of glycan mimetics significantly influences recruitment of protein receptors to the membrane. Glycan-conjugates in the ordered phase demonstrate enhanced lectin binding, supporting the idea that raft-like domains facilitate stronger receptor interactions. This study provides a platform for systematically investigating spatial and dynamic presentation of glycans in biological systems and presents the first experimental evidence that glycan accumulation in lipid rafts enhances receptor binding affinity, offering deeper insights into the glycocalyx's functional mechanisms.
Collapse
Affiliation(s)
- Luca-Cesare Blawitzki
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg i.Br., Germany
- Department for Organic and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Cornelia Monzel
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Stephan Schmidt
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg i.Br., Germany
| | - Laura Hartmann
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg i.Br., Germany
| |
Collapse
|
3
|
Tuomivaara ST, Teo CF, Jan YN, Wiita AP, Jan LY. SLAPSHOT reveals rapid dynamics of extracellularly exposed proteome in response to calcium-activated plasma membrane phospholipid scrambling. Commun Biol 2024; 7:1060. [PMID: 39210032 PMCID: PMC11362511 DOI: 10.1038/s42003-024-06729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
To facilitate our understanding of proteome dynamics during signaling events, robust workflows affording fast time resolution without confounding factors are essential. We present Surface-exposed protein Labeling using PeroxidaSe, H2O2, and Tyramide-derivative (SLAPSHOT) to label extracellularly exposed proteins in a rapid, specific, and sensitive manner. Simple and flexible SLAPSHOT utilizes recombinant soluble APEX2 protein applied to cells, thus circumventing the engineering of tools and cells, biological perturbations, and labeling biases. We applied SLAPSHOT and quantitative proteomics to examine the TMEM16F-dependent plasma membrane remodeling in WT and TMEM16F KO cells. Time-course data ranging from 1 to 30 min of calcium stimulation revealed co-regulation of known protein families, including the integrin and ICAM families, and identified proteins known to reside in intracellular organelles as occupants of the freshly deposited extracellularly exposed membrane. Our data provide the first accounts of the immediate consequences of calcium signaling on the extracellularly exposed proteome.
Collapse
Affiliation(s)
- Sami T Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences and Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA, USA
| | - Chin Fen Teo
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Lily Y Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
- Department of Physiology, University of California, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|
4
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
5
|
Weesner JA, Annunziata I, van de Vlekkert D, d'Azzo A. Glycosphingolipids within membrane contact sites influence their function as signaling hubs in neurodegenerative diseases. FEBS Open Bio 2023; 13:1587-1600. [PMID: 37014126 PMCID: PMC10476575 DOI: 10.1002/2211-5463.13605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
Intracellular organelles carry out many of their functions by engaging in extensive interorganellar communication through specialized membrane contact sites (MCSs) formed where two organelles tether to each other or to the plasma membrane (PM) without fusing. In recent years, these ubiquitous membrane structures have emerged as central signaling hubs that control a multitude of cellular pathways, ranging from lipid metabolism/transport to the exchange of metabolites and ions (i.e., Ca2+ ), and general organellar biogenesis. The functional crosstalk between juxtaposed membranes at MCSs relies on a defined composite of proteins and lipids that populate these microdomains in a dynamic fashion. This is particularly important in the nervous system, where alterations in the composition of MCSs have been shown to affect their functions and have been implicated in the pathogenesis of neurodegenerative diseases. In this review, we focus on the MCSs that are formed by the tethering of the endoplasmic reticulum (ER) to the mitochondria, the ER to the endo-lysosomes and the mitochondria to the lysosomes. We highlight how glycosphingolipids that are aberrantly processed/degraded and accumulate ectopically in intracellular membranes and the PM change the topology of MCSs, disrupting signaling pathways that lead to neuronal demise and neurodegeneration. In particular, we focus on neurodegenerative lysosomal storage diseases linked to altered glycosphingolipid catabolism.
Collapse
Affiliation(s)
| | - Ida Annunziata
- Department of GeneticsSt. Jude Children's Research HospitalMemphisTNUSA
- Compliance OfficeSt. Jude Children's Research HospitalMemphisTNUSA
| | | | - Alessandra d'Azzo
- Department of GeneticsSt. Jude Children's Research HospitalMemphisTNUSA
- Department of Anatomy and Neurobiology, College of Graduate Health SciencesUniversity of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
6
|
Tuomivaara ST, Teo CF, Jan YN, Jan LY, Wiita AP. SLAPSHOT reveals rapid dynamics of extracellularly exposed proteome in response to calcium-activated plasma membrane phospholipid scrambling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534250. [PMID: 36993417 PMCID: PMC10055316 DOI: 10.1101/2023.03.26.534250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To facilitate our understanding of the often rapid and nuanced dynamics of extracellularly exposed proteomes during signaling events, it is important to devise robust workflows affording fast time resolution without biases and confounding factors. Here, we present Surface-exposed protein Labeling using PeroxidaSe, H2O2, and Tyramide-derivative (SLAPSHOT), to label extracellularly exposed proteins in a rapid, sensitive, and specific manner, while preserving cellular integrity. This experimentally simple and flexible method utilizes recombinant soluble APEX2 peroxidase that is applied to cells, thus circumventing biological perturbations, tedious engineering of tools and cells, and labeling biases. APEX2 neither requires metal cations for activity nor contains disulfide bonds, conferring versatility for a wide spectrum of experimental setups. We applied SLAPSHOT followed by quantitative mass spectrometry-based proteomics analysis to examine the immediate and extensive cell surface expansion and ensuing restorative membrane shedding upon the activation of Scott syndrome-linked TMEM16F, a ubiquitously expressed calcium-dependent phospholipid scramblase and ion channel. Time-course data ranging from one to thirty minutes of calcium stimulation using wild-type and TMEM16F deficient cells revealed intricate co-regulation of known protein families, including those in the integrin and ICAM families. Crucially, we identified proteins that are known to reside in intracellular organelles, including ER, as occupants of the freshly deposited membrane, and mitovesicles as an abundant component and contributor to the extracellularly exposed proteome. Our study not only provides the first accounts of the immediate consequences of calcium signaling on the extracellularly exposed proteome, but also presents a blueprint for the application of SLAPSHOT as a general approach for monitoring extracellularly exposed protein dynamics.
Collapse
Affiliation(s)
- Sami T. Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Chin Fen Teo
- Howard Hughes Medical Institute, University of California, San Francisco, CA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA
- Department of Physiology, University of California, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA
| | - Lily Y. Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA
- Department of Physiology, University of California, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA
| | - Arun P. Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
7
|
Jain V, Harper SL, Versace AM, Fingerman D, Brown GS, Bhardwaj M, Crissey MAS, Goldman AR, Ruthel G, Liu Q, Zivkovic A, Stark H, Herlyn M, Gimotty PA, Speicher DW, Amaravadi RK. Targeting UGCG Overcomes Resistance to Lysosomal Autophagy Inhibition. Cancer Discov 2023; 13:454-473. [PMID: 36331284 PMCID: PMC9905280 DOI: 10.1158/2159-8290.cd-22-0535] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/10/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Lysosomal autophagy inhibition (LAI) with hydroxychloroquine or DC661 can enhance cancer therapy, but tumor regrowth is common. To elucidate LAI resistance, proteomics and immunoblotting demonstrated that LAI induced lipid metabolism enzymes in multiple cancer cell lines. Lipidomics showed that LAI increased cholesterol, sphingolipids, and glycosphingolipids. These changes were associated with striking levels of GM1+ membrane microdomains (GMM) in plasma membranes and lysosomes. Inhibition of cholesterol/sphingolipid metabolism proteins enhanced LAI cytotoxicity. Targeting UDP-glucose ceramide glucosyltransferase (UGCG) synergistically augmented LAI cytotoxicity. Although UGCG inhibition decreased LAI-induced GMM and augmented cell death, UGCG overexpression led to LAI resistance. Melanoma patients with high UGCG expression had significantly shorter disease-specific survival. The FDA-approved UGCG inhibitor eliglustat combined with LAI significantly inhibited tumor growth and improved survival in syngeneic tumors and a therapy-resistant patient-derived xenograft. These findings nominate UGCG as a new cancer target, and clinical trials testing UGCG inhibition in combination with LAI are warranted. SIGNIFICANCE We discovered UGCG-dependent lipid remodeling drives resistance to LAI. Targeting UGCG with a drug approved for a lysosomal storage disorder enhanced LAI antitumor activity without toxicity. LAI and UGCG inhibition could be tested clinically in multiple cancers. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Amanda M. Versace
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Monika Bhardwaj
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary Ann S. Crissey
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany
| | - Holgar Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany
| | | | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W. Speicher
- The Wistar Institute, Philadelphia, PA 19104, USA
- Corresponding authors: Ravi K. Amaravadi, MD, University of Pennsylvania, 852 BRB 2/3, 421 Curie Blvd, Philadelphia, PA 19104, Tel: 215-796-5159, ; David W. Speicher, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, Tel: 215-898-3972,
| | - Ravi K. Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding authors: Ravi K. Amaravadi, MD, University of Pennsylvania, 852 BRB 2/3, 421 Curie Blvd, Philadelphia, PA 19104, Tel: 215-796-5159, ; David W. Speicher, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, Tel: 215-898-3972,
| |
Collapse
|
8
|
Nakayama H, Hanafusa K, Iwabuchi K. Biochemical and Microscopic Analyses for Sphingolipids and Its Related Molecules in Phagosomes. Methods Mol Biol 2023; 2613:203-214. [PMID: 36587081 DOI: 10.1007/978-1-0716-2910-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glycosphingolipids (GSLs) form GSL-enriched microdomains, together with sphingomyelin (SM), cholesterol, glycosylphosphatidylinositol (GPI)-anchored proteins, and membrane-associated signaling molecules. GSL-enriched microdomains mediate a variety of physiological functions, including innate immune responses. Innate immune responses are initialized by the binding of host pattern recognition receptors (PRRs) to pathogen-associated molecular patterns (PAMPs) expressed in microorganisms. This binding triggers phagocytosis and leads to the formation of a phagosome-containing microorganism and the subsequent lysosomal fusion with a phagosome. To detect the molecular interaction between GSL-enriched microdomains, sphingolipids, and signaling molecules from the uptake of the microorganism until the phagosome-containing microorganism fuses with lysosomes, biochemical and microscopic approaches are indispensable. Here, we describe the detailed methods for isolating phagosomes and observing the molecular interaction using a superresolution microscope. Our methodology provides a strategy for exploring the molecular interaction between the host and pathogen and for developing new treatment approaches.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan. .,Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan. .,Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| | - Kei Hanafusa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan. .,Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan. .,Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| |
Collapse
|
9
|
Bhavanandan VP, Gowda DC. Introduction to the Complexity of Cell Surface and Tissue Matrix Glycoconjugates. ADVANCES IN NEUROBIOLOGY 2023; 29:1-39. [PMID: 36255670 DOI: 10.1007/978-3-031-12390-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This chapter provides an overview of structures and functions of complex carbohydrates (commonly called glycans) that are covalently linked to proteins or lipids to form glycoconjugates known as glycoproteins, glycolipids, and proteoglycans. To understand the complexity of the glycan structures, the nature of their monosaccharide building blocks, how the monomeric units are covalently linked to each other, and how the resulting glycans are attached to proteins or lipids are discussed. Then, the classification, nomenclature, structural features, and functions of the glycan moieties of animal glycoconjugates are briefly described. All three classes of glycoconjugates are constituents of plasma membranes of all animal cells, including those of the nervous system. Glycoproteins and proteoglycans are also found abundantly as constituents of tissue matrices. Additionally, glycan-rich mucin glycoproteins are the major constituents of mucus secretions of epithelia of various organs. Furthermore, the chapter draws attention to the incredible structural complexity and diversity of the glycan moieties of cell surface and extracellular glycoconjugates. Finally, the involvement of glycans as informational molecules in a wide range of essential functions in almost all known biological processes, which are crucial for development, differentiation, and normal functioning of animals, is discussed.
Collapse
Affiliation(s)
- Veer P Bhavanandan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
- , Wellington, FL, USA.
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
10
|
Abbas G, Cardenas AE, Elber R. The Structures of Heterogeneous Membranes and Their Interactions with an Anticancer Peptide: A Molecular Dynamics Study. Life (Basel) 2022; 12:1473. [PMID: 36294908 PMCID: PMC9604715 DOI: 10.3390/life12101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
We conduct molecular dynamics simulations of model heterogeneous membranes and their interactions with a 24-amino acid peptide-NAF-144-67. NAF-144-67 is an anticancer peptide that selectively permeates and kills malignant cells; it does not permeate normal cells. We examine three membranes with different binary mixtures of lipids, DOPC-DOPA, DOPC-DOPS, and DOPC-DOPE, with a single peptide embedded in each as models for the diversity of biological membranes. We illustrate that the peptide organization in the membrane depends on the types of nearby phospholipids and is influenced by the charge and size of the head groups. The present study sheds light on early events of permeation and the mechanisms by which an amphiphilic peptide crosses from an aqueous solution to a hydrophobic membrane. Understanding the translocation mechanism is likely to help the design of new permeants.
Collapse
Affiliation(s)
- Ghulam Abbas
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan or
| | - Alfredo E. Cardenas
- Oden Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ron Elber
- Oden Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Yi X, Gao X, Zhang X, Xia G, Shen X. Preparation of liposomes by glycolipids/phospholipids as wall materials: studies on stability and digestibility. Food Chem 2022; 402:134328. [DOI: 10.1016/j.foodchem.2022.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
|
12
|
Senturk F, Cakmak S, Kocum IC, Gumusderelioglu M, Ozturk GG. Effects of radiofrequency exposure on in vitro blood-brain barrier permeability in the presence of magnetic nanoparticles. Biochem Biophys Res Commun 2022; 597:91-97. [PMID: 35134610 DOI: 10.1016/j.bbrc.2022.01.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
The blood-brain barrier (BBB) remains a major obstacle for the delivery of drugs in the treatment of many neurological diseases. In this study, we aimed to investigate the effects of radiofrequency electromagnetic fields (RF-EMFs) on the permeability of an in vitro BBB model under RF exposure alone, or in the presence of nanoparticles (NPs). For this purpose, an in vitro BBB model was established by seeding human umbilical vein endothelial cells (HUVECs) and human glioblastoma cell line (T98G) on the apical and basolateral sides of the transwell membrane, respectively. The integrity of the BBB model was confirmed by measuring transendothelial electrical resistance (TEER), and a fluorescein isothiocyanate (FITC)-dextran permeability assay was performed when the resistance reached 120 Ω cm2. After the RF-field exposure (13.56 MHz, 80 W, 10 min), we found that FITC-dextran transported across the in vitro BBB was increased 10-fold compared to FITC-dextran transported without an RF-field. This notable phenomenon, which can be called the burst permeability RF effect (BP-RF), has been proposed for the first time in the literature. Subsequently, the effect of the RF-field on BBB permeability was also investigated in the presence of superparamagnetic iron oxide nanoparticles (SPIONs) and magnetic poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-b-PEG) nanoparticles (m-PNPs). It was found that the amount of both transported NPs on the basolateral sides increased after exposure to the RF-field. As a result, the RF-field can be applied simultaneously during treatment with clinical agents or nanocarriers, improving the permeability of the BBB, which may contribute to therapeutic efficacy of many drugs that are used in neurological diseases.
Collapse
Affiliation(s)
- Fatih Senturk
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | - Soner Cakmak
- Division of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
| | | | - Menemse Gumusderelioglu
- Division of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Goknur Guler Ozturk
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
13
|
Yokoyama N, Hanafusa K, Hotta T, Oshima E, Iwabuchi K, Nakayama H. Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. Int J Mol Sci 2021; 22:9565. [PMID: 34502474 PMCID: PMC8430928 DOI: 10.3390/ijms22179565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| |
Collapse
|