1
|
Li Y, Wang L, Wei Wangb W, Huang W, Liu S. Acetylation modification of AIM2 by KAT2B suppresses the AKT/Wnt/β-catenin signaling pathway activation and inhibits breast cancer progression. Epigenetics Chromatin 2025; 18:27. [PMID: 40317048 PMCID: PMC12046796 DOI: 10.1186/s13072-025-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND The development of breast cancer is known to be greatly influenced by epigenetic changes. The impact of histone acetyltransferase KAT2B on AIM2 and AKT/Wnt/β-catenin signaling have not been studied yet. METHODS In this study, clinical breast cancer tissue and para-cancer tissue samples were collected from 60 breast cancer patients, and correlations between AIM2 expression and pathological parameters were analyzed. Breast cancer cell lines were obtained for in vitro studies, and AIM2 overexpression or KAT2B knockdown models were constructed. The CCK8 and Edu assay were conducted to measure cell proliferation, and cell invasion was determined by Transwell analysis. For mRNA and protein expression measurement, RT-qPCR and western blotting were utilized, respectively. Co-immunoprecipitation was used to investigate the interaction between KAT2B and AIM2. Animal models were established using BALB/c-nu mice through subcutaneous injection with breast cancer cells transfected with AIM2 K90R mutant vectors. Expression of Ki-67, KAT2B and AIM2 AcK90 was measured using immunohistochemistry. RESULTS The clinical samples showed that AIM2 was downregulated in breast cancer tissues and was linked to lymph node metastases and advanced clinical stage. Subsequently, the in vitro studies found that AIM2 exerted a suppressive impact on the growth, spread, and invasion of breast cancer cells. We further demonstrated that KAT2B mediates acetylation of AIM2 at the lysine 90 residue, which suppresses cancer cell growth, invasion, and migration through inhibiting the AKT/Wnt/β-catenin axis. In animal models, we further confirmed that acetylation of AIM2 inhibited the stimulation of the AKT/Wnt/β-catenin axis, thereby suppressing breast cancer growth in vivo. Finally, we proved that the KAT2B and acetylation of AIM2 correlated with the prognosis of clinical breast cancer. CONCLUSION Our study suggests that KAT2B-mediated acetylation of AIM2 can suppress the stimulation of the AKT/Wnt/β-catenin axis, consequently inhibiting breast carcinoma progression.
Collapse
Affiliation(s)
- Yaqiong Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing City, 40010, China
- Department of Thyroid and Mammary Vascular Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Lingcheng Wang
- Department of Thyroid and Mammary Vascular Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Wei Wei Wangb
- Department of Hepatobiliary Pancreatic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Wei Huang
- Department of Thyroid and Mammary Vascular Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing City, 40010, China.
| |
Collapse
|
2
|
Liu X, Zhou W, Zheng D, Yang X, Qing Y, Liao W, Zeng W. BATF-Activated AIM2 Mediates Immune Escape in Lung Adenocarcinoma by Regulating PD-L1. Int Arch Allergy Immunol 2024; 186:345-357. [PMID: 39471785 DOI: 10.1159/000540875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/26/2024] [Indexed: 11/01/2024] Open
Abstract
INTRODUCTION Immunotherapy has demonstrated encouraging outcomes in tackling lung adenocarcinoma (LUAD), but immune escape may bring negative impacts. Only a single study has demonstrated the function of AIM2 in LUAD and reported that NF-κB and STAT1 are the chief transcription factors, this study is designed to analyze the role of AIM2 and examine the transcription factor, BATF in LUAD immunotherapy. METHODS Bioinformatics methods to analyze the expression and binding sites of AIM2 and BATF in LUAD, as well as the correlation between AIM2 and PD-L1. Dual-luciferase and chromatin immunoprecipitation assays were used to verify the binding of AIM2 and BATF. qRT-PCR and Western blot assayed expression of AIM2, BATF, and PD-L1 in LUAD. MTT measured cell viability, flow cytometry detected cell apoptosis, cytotoxicity assays measured the toxicity of CD8+ T cells to cancer cells, and enzyme-linked immunosorbent assay measured the expression of related cytokines. Immunohistochemistry detected the protein expression levels of AIM2, BATF, PD-L1, and CD8 in tumor tissue. RESULTS AIM2 and BATF were both highly expressed in LUAD, and there was a targeted binding relationship. BATF promoted LUAD cell proliferation and inhibited apoptosis by affecting AIM2 expression. The downregulation of AIM2 and PD-L1 expression inhibited PD-L1 and activated CD8+ T cells. The rescue experiment manifested that increased BATF weakened repression of AIM2 silencing on LUAD tumor immune escape in vitro and in vivo. CONCLUSION BATF promoted AIM2 expression, upregulated PD-L1, inhibited CD8+ T cell activity, and ultimately led to immune escape in LUAD. Our research uncovered an innovative outlook on the intricate regulation of immune checkpoint molecules and proposed a new approach to target the BATF/AIM2 axis in tumor immunotherapy.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wangyan Zhou
- Department of Medical Record, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Dayang Zheng
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xu Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongcheng Qing
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Weijun Liao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Zeng
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Pan B, Kang J, Zheng R, Wei C, Zhi Y. Molecular mechanism of ferroptosis and its application in the treatment of clear cell renal cell carcinoma. Pathol Res Pract 2024; 260:155324. [PMID: 38905897 DOI: 10.1016/j.prp.2024.155324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 06/23/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the urinary tract, the incidence of which is continuously increasing and affects human health worldwide. Despite advances in existing treatments, treatment outcomes still need to be improved due to higher rates of postoperative recurrence, chemotherapy resistance, etc.; thus, there is an urgent need for innovative therapeutic approaches. Ferroptosis is a recently found type of regulated cell death that is characterized primarily by the buildup of lipid peroxidation products and fatal reactive oxygen species created by iron metabolism, which plays a crucial role in tumor progression and therapy.With the molecular mechanisms associated with ferroptosis being increasingly studied and refined, triggering ferroptosis by regulators that target ferroptosis and ccRCC may be the key to developing potential therapeutic strategies for ccRCC. Therefore, ferroptosis is expected to be a new breakthrough in treating ccRCC. This paper examines the mechanism of ferroptosis, the regulatory mechanism of ferroptosis in ccRCC, and the potential application of ferroptosis in combination with other therapies for the treatment of ccRCC. The goal is to offer novel perspectives for the research and clinical application of ferroptosis in the treatment of ccRCC.
Collapse
Affiliation(s)
- Beifen Pan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Kang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rongxin Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cuiping Wei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yong Zhi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
4
|
Chao L, Zhang W, Feng Y, Gao P, Ma J. Pyroptosis: a new insight into intestinal inflammation and cancer. Front Immunol 2024; 15:1364911. [PMID: 38455052 PMCID: PMC10917886 DOI: 10.3389/fimmu.2024.1364911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Pyroptosis is an innate immune response triggered by the activation of inflammasomes by various influencing factors, characterized by cell destruction. It impacts the immune system and cancer immunotherapy. In recent years, the roles of pyroptosis and inflammasomes in intestinal inflammation and cancer have been continuously confirmed. This article reviews the latest progress in pyroptosis mechanisms, new discoveries of inflammasomes, mutual regulation between inflammasomes, and their applications in intestinal diseases. Additionally, potential synergistic treatment mechanisms of intestinal diseases with pyroptosis are summarized, and challenges and future directions are discussed, providing new ideas for pyroptosis therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
5
|
Sharma BR, Kanneganti TD. Inflammasome signaling in colorectal cancer. Transl Res 2023; 252:45-52. [PMID: 36150688 PMCID: PMC9839553 DOI: 10.1016/j.trsl.2022.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/17/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the world. Inflammation is often an underlying risk factor for developing CRC. Maintaining gut homeostasis and balancing inflammation is therefore critical to prevent CRC development. One key class of molecular complexes that impact gut homeostasis are inflammasomes, cytosolic multiprotein immune complexes that assemble upon sensing various intracellular alterations. Inflammasomes regulate inflammation, cell death, cytokine release, signaling cascades, and other cellular processes. Roles for inflammasomes in colitis and colitis-associated CRC have been shown in multiple animal models. The activation of inflammasomes leads to the release of the bioactive forms of interleukin (IL)-1β and IL-18, the inflammasome effector cytokines. These cytokines ensure an optimal inflammatory immune response during colitis and colitis-associated CRC. The activation of some inflammasome sensors, including NLRP3, NLRP1, NLRP6, and Pyrin, provides protection from colitis-associated CRC via effector cytokine-dependent mechanisms. Additionally, activation of other inflammasome sensors, such as AIM2, NLRC4, and NAIPs, provides mostly effector cytokine-independent protection. Inflammasomes can also act as integral components of PANoptosomes, which are multifaceted complexes that integrate components from other cell death pathways and regulate a unique form of innate immune inflammatory cell death called PANoptosis. Furthermore, IRF1, a key regulator of some inflammasomes and PANoptosomes, has been implicated in CRC. It is therefore critical to consider the role of inflammasomes in effector cytokine-dependent and -independent protection as well as their role in PANoptosis to modulate CRC for therapeutic targeting. Here, we discuss the mechanisms of inflammasome activation, the functions of inflammasomes in CRC, and current obstacles and future perspectives in inflammasome and CRC research.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
6
|
Wang Q, Gao S, Shou Y, Jia Y, Wei Z, Liu Y, Shi J, Miao D, Miao Q, Zhao C, Liu C, Yang H, Xu T, Zhang X. AIM2 promotes renal cell carcinoma progression and sunitinib resistance through FOXO3a-ACSL4 axis-regulated ferroptosis. Int J Biol Sci 2023; 19:1266-1283. [PMID: 36923928 PMCID: PMC10008700 DOI: 10.7150/ijbs.79853] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Renal cell carcinoma (RCC) is a serious threat to people's health due to its rapid progression, and patients easily develop resistance to targeted therapy. The absent in melanoma 2 (AIM2) is a receptor protein that has recently been proposed to play an important role in various diseases. In this study, AIM2 was identified as a new biomarker of RCC and promoted RCC progression and sunitinib resistance in an inflammasome-independent manner. Mechanistically, AIM2 promoted FOXO3a phosphorylation and proteasome degradation, thereby reducing its transcriptional effect on ACSL4 and inhibiting ferroptosis. In summary, AIM2 promoted RCC progression and sunitinib resistance through FOXO3a-ACSL4 axis-regulated ferroptosis, which could provide new ideas and therapeutic targets for RCC diagnosis and treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Gao
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Shou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujie Jia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanyi Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
7
|
Jin J, Wu Y, Zhao Z, Wu Y, Zhou YD, Liu S, Sun Q, Yang G, Lin J, Nagle DG, Qin J, Zhang Z, Chen HZ, Zhang W, Sun S, Luan X. Small-molecule PROTAC mediates targeted protein degradation to treat STAT3-dependent epithelial cancer. JCI Insight 2022; 7:160606. [PMID: 36509291 DOI: 10.1172/jci.insight.160606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
The aberrant activation of STAT3 is associated with the etiology and progression in a variety of malignant epithelial-derived tumors, including head and neck squamous cell carcinoma (HNSCC) and colorectal cancer (CRC). Due to the lack of an enzymatic catalytic site or a ligand-binding pocket, there are no small-molecule inhibitors directly targeting STAT3 that have been approved for clinical translation. Emerging proteolysis targeting chimeric (PROTAC) technology-based approach represents a potential strategy to overcome the limitations of conventional inhibitors and inhibit activation of STAT3 and downstream genes. In this study, the heterobifunctional small-molecule-based PROTACs are successfully prepared from toosendanin (TSN), with 1 portion binding to STAT3 and the other portion binding to an E3 ubiquitin ligase. The optimized lead PROTAC (TSM-1) exhibits superior selectivity, potency, and robust antitumor effects in STAT3-dependent HNSCC and CRC - especially in clinically relevant patient-derived xenografts (PDX) and patient-derived organoids (PDO). The following mechanistic investigation identifies the reduced expression of critical downstream STAT3 effectors, through which TSM-1 promotes cell cycle arrest and apoptosis in tumor cells. These findings provide the first demonstration to our knowledge of a successful PROTAC-targeting strategy in STAT3-dependent epithelial cancer.
Collapse
Affiliation(s)
- Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaping Wu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, and.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zeng Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,China Institute of Pharmaceutical Industry, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Dong Zhou
- Department of Chemistry and Biochemistry, College of Liberal Arts, and
| | - Sanhong Liu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyan Sun
- China Institute of Pharmaceutical Industry, Shanghai, China
| | - Guizhu Yang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, and.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dale G Nagle
- Department of Chemistry and Biochemistry, College of Liberal Arts, and.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Jiangjiang Qin
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (CAS), Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, and.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, and.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Scarfe L, Mackie GM, Maslowski KM. Inflammasome-independent functions of NAIPs and NLRs in the intestinal epithelium. Biochem Soc Trans 2021; 49:2601-2610. [PMID: 34854889 PMCID: PMC8786307 DOI: 10.1042/bst20210365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
The gut relies on the complex interaction between epithelial, stromal and immune cells to maintain gut health in the face of food particles and pathogens. Innate sensing by the intestinal epithelium is critical for maintaining epithelial barrier function and also orchestrating mucosal immune responses. Numerous innate pattern recognition receptors (PRRs) are involved in such sensing. In recent years, several Nucleotide-binding-domain and Leucine-rich repeat-containing receptors (NLRs) have been found to partake in pathogen or damage sensing while also being implicated in gut pathologies, such as colitis and colorectal cancer (CRC). Here, we discuss the current literature focusing on NLR family apoptosis inhibitory proteins (NAIPs) and other NLRs that have non-inflammasome roles in the gut. The mechanisms behind NLR-mediated protection often converges on similar signalling pathways, such as STAT3, MAPK and NFκB. Further understanding of how these NLRs contribute to the maintenance of gut homeostasis will be important for understanding gut pathologies and developing new therapies.
Collapse
Affiliation(s)
- Lisa Scarfe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Gillian M. Mackie
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Kendle M. Maslowski
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|