1
|
Gu W, Zeng B, Zhang Y, Zhao F, Lin X, Wang X, Liu N, Sun F, Zhou F, Zhang S, Dai Y. Acyl-CoA long-chain synthetase 1 (ACSL1) protects the endometrium from excess palmitic acid stress during decidualization. Cell Signal 2024; 124:111438. [PMID: 39343116 DOI: 10.1016/j.cellsig.2024.111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Endometrial receptivity relies on the functional and morphological change of endometrium stromal cells (EnSCs) and epithelial cells in the secretory phase. Decidualization of ESCs and transitions in endometrium epithelial cells are crucial for successful uterine implantation and maintaining pregnancy. Accumulated data have demonstrated that decidualization is tightly coordinated by lipid metabolism. However, the lipidomic change and regulatory mechanism in uterine decidualization are still unknown. Our study showed that endometrium stromal cells and decidual stromal cells had different lipidomic profiles. Acyl-CoA long-chain synthetase 1 (ACSL1) which converts fatty acids to acyl-CoA expression was strongly elevated during decidualization. ACSL1 knockdown inhibited stromal-to-decidual cell transition and decreased the decidualization markers prolactin and Insulin-like growth factor-binding protein-1 (IGFBP1) expression through the AKT pathway. Lipid uptake was upregulated in stromal cells while lipid droplet accumulation was downregulated during decidualization. Meanwhile, silencing of ACSL1 led to impaired spare respiratory capacity, and downregulation of TFAM expression, indicating robust lipid metabolism. While palmitic acid addition impeded decidualization, overexpression of ACSL1 could partially reverse its effect. ACSL inhibitor Triacsin C significantly impeded decidualization in a three-dimensional coculture model consisting of endometrial stromal cells and epithelial cells. Knockdown of ACSL1 in stromal cells decreased the expression of the decidualization markers PAEP and SPP1 in epithelial cells. Collectively, ACSL1 is essential for uterine decidualization and protects stromal cells from excess palmitic acid stress.
Collapse
Affiliation(s)
- Weijia Gu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Biya Zeng
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Yi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Fanxuan Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Xiang Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Xinyu Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Na Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Fangying Sun
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China.
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China.
| |
Collapse
|
2
|
Tang Y, Frisendahl C, Piltonen TT, Arffman RK, Lalitkumar PG, Gemzell-Danielsson K. Human Endometrial Pericytes: A Comprehensive Overview of Their Physiological Functions and Implications in Uterine Disorders. Cells 2024; 13:1510. [PMID: 39273080 PMCID: PMC11394273 DOI: 10.3390/cells13171510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Pericytes are versatile cells integral to the blood vessel walls of the microcirculation, where they exhibit specific stem cell traits. They are essential in modulating blood flow, ensuring vascular permeability, and maintaining homeostasis and are involved in the tissue repair process. The human endometrium is a unique and complex tissue that serves as a natural scar-free healing model with its cyclical repair and regeneration process every month. The regulation of pericytes has gained increasing attention due to their involvement in various physiological and pathological processes. However, endometrial pericytes are less well studied compared to the pericytes in other organs. This review aims to provide a comprehensive overview of endometrial pericytes, with a focus on elucidating their physiological function and potential implications in uterine disorders.
Collapse
Affiliation(s)
- Yiqun Tang
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden; (Y.T.); (C.F.); (P.G.L.)
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland; (T.T.P.); (R.K.A.)
| | - Caroline Frisendahl
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden; (Y.T.); (C.F.); (P.G.L.)
| | - Terhi T. Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland; (T.T.P.); (R.K.A.)
| | - Riikka K. Arffman
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland; (T.T.P.); (R.K.A.)
| | - Parameswaran Grace Lalitkumar
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden; (Y.T.); (C.F.); (P.G.L.)
| | - Kristina Gemzell-Danielsson
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden; (Y.T.); (C.F.); (P.G.L.)
| |
Collapse
|
3
|
Xiong Y, Shi L, Zhang M, Zhou C, Mao Y, Hong Z, Wang Z, Ma L. Differential expression of tsRNAs and miRNAs in embryo culture medium: potential impact on embryo implantation. J Assist Reprod Genet 2024; 41:781-793. [PMID: 38270749 PMCID: PMC10957807 DOI: 10.1007/s10815-024-03034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE Can small RNA derived from embryos in conditioned embryo culture medium (ECM) influence embryo implantation? METHODS We employed small RNA sequencing to investigate the expression profiles of transfer RNA-derived small RNA (tsRNA) and microRNA (miRNA) in ECM from high-quality and low-quality embryos. Quantitative real-time PCR was employed to validate the findings of small RNA sequencing. Additionally, we conducted bioinformatics analysis to predict the potential functions of these small RNAs in embryo implantation. To establish the role of tiRNA-1:35-Leu-TAG-2 in embryonic trophoblast cell adhesion, we utilized co-culture systems involving JAR and Ishikawa cells. RESULTS Our analysis revealed upregulation of nine tsRNAs and four miRNAs in ECM derived from high-quality embryos, whereas 37 tsRNAs and 12 miRNAs exhibited upregulation in ECM from low-quality embryos. The bioinformatics analysis of tsRNA, miRNA, and mRNA pathways indicated that their respective target genes may play pivotal roles in both embryo development and endometrial receptivity. Utilizing tiRNA mimics, we demonstrated that the prominently expressed tiRNA-1:35-Leu-TAG-2 in the low-quality ECM group can be internalized by Ishikawa cells. Notably, transfection of tiRNA-1:35-Leu-TAG-2 into Ishikawa cells reduced the attachment rate of JAR spheroids. CONCLUSION Our investigation uncovers significant variation in the expression profiles of tsRNAs and miRNAs between ECM derived from high- and low-quality embryos. Intriguingly, the release of tiRNA-1:35-Leu-TAG-2 by low-quality embryos detrimentally affects embryo implantation and endometrial receptivity. These findings provide fresh insights into understanding the molecular foundations of embryo-endometrial communication.
Collapse
Affiliation(s)
- Yao Xiong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Lei Shi
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Chun Zhou
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Yanhong Mao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Zihan Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China.
| |
Collapse
|
4
|
Chen S, Zhang A, Li N, Wu H, Li Y, Liu S, Yan Q. Elevated high-mannose N-glycans hamper endometrial decidualization. iScience 2023; 26:108170. [PMID: 37915610 PMCID: PMC10616321 DOI: 10.1016/j.isci.2023.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Decidualization of endometrial stromal cells is a hallmark of endometrial receptivity for embryo implantation, and dysfunctional decidualization is associated with pregnancy failure. Protein glycosylation is an important posttranslational modification that affects the structure and function of glycoproteins. Our results showed that high-mannose epitopes were elevated in the decidual tissues of miscarriage patients compared with early pregnant women by Lectin microarray. Furthermore, the level of mannosyl-oligosaccharide α-1,2 mannosidase IA (MAN1A1), a key enzyme for high-mannose glycan biosynthesis, was decreased in the decidual tissues of miscarriage patients. Screening of lncRNAs showed that lncNEAT1 level was increased in the serum and decidua of miscarriage patients, and negatively correlated with MAN1A1 expression. The results also revealed that specific binding of lncNEAT1 with nucleophosmin (NPM1)-SP1 transcription complex inhibited MAN1A1 expression and hampered endometrial decidualization and embryo implantation potential. The study suggests the new insights into the function of high-mannose glycans/MAN1A1 modification during endometrial decidualization.
Collapse
Affiliation(s)
- Siyi Chen
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Aihui Zhang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Na Li
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Hongpan Wu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yaqi Li
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
5
|
Meng X, Chen C, Qian J, Cui L, Wang S. Energy metabolism and maternal-fetal tolerance working in decidualization. Front Immunol 2023; 14:1203719. [PMID: 37404833 PMCID: PMC10315848 DOI: 10.3389/fimmu.2023.1203719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
One pivotal aspect of early pregnancy is decidualization. The decidualization process includes two components: the differentiation of endometrial stromal cells to decidual stromal cells (DSCs), as well as the recruitment and education of decidual immune cells (DICs). At the maternal-fetal interface, stromal cells undergo morphological and phenotypic changes and interact with trophoblasts and DICs to provide an appropriate decidual bed and tolerogenic immune environment to maintain the survival of the semi-allogeneic fetus without causing immunological rejection. Despite classic endocrine mechanism by 17 β-estradiol and progesterone, metabolic regulations do take part in this process according to recent studies. And based on our previous research in maternal-fetal crosstalk, in this review, we elaborate mechanisms of decidualization, with a special focus on DSC profiles from aspects of metabolism and maternal-fetal tolerance to provide some new insights into endometrial decidualization in early pregnancy.
Collapse
Affiliation(s)
| | | | | | - Liyuan Cui
- *Correspondence: Songcun Wang, ; Liyuan Cui,
| | | |
Collapse
|
6
|
Viardot-Foucault V, Zhou J, Bi D, Takinami Y, Chan JKY, Lee YH. Dehydroepiandrosterone supplementation and the impact of follicular fluid metabolome and cytokinome profiles in poor ovarian responders. J Ovarian Res 2023; 16:107. [PMID: 37268990 PMCID: PMC10239139 DOI: 10.1186/s13048-023-01166-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Poor ovarian responders (POR) are women undergoing in-vitro fertilization who respond poorly to ovarian stimulation, resulting in the retrieval of lower number of oocytes, and subsequently lower pregnancy rates. The follicular fluid (FF) provides a crucial microenvironment for the proper development of follicles and oocytes through tightly controlled metabolism and cell signaling. Androgens such as dehydroepiandrosterone (DHEA) have been proposed to alter the POR follicular microenvironment, but the impact DHEA imposes on the FF metabolome and cytokine profiles is unknown. Therefore, the objective of this study is to profile and identify metabolomic changes in the FF with DHEA supplementation in POR patients. METHODS FF samples collected from 52 POR patients who underwent IVF with DHEA supplementation (DHEA +) and without (DHEA-; controls) were analyzed using untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics and a large-scale multiplex suspension immunoassay covering 65 cytokines, chemokines and growth factors. Multivariate statistical modelling by partial least squares-discriminant regression (PLSR) analysis was performed for revealing metabolome-scale differences. Further, differential metabolite analysis between the two groups was performed by PLSR β-coefficient regression analysis and Student's t-test. RESULTS Untargeted metabolomics identified 118 FF metabolites of diverse chemistries and concentrations which spanned three orders of magnitude. They include metabolic products highly associated with ovarian function - amino acids for regulating pH and osmolarity, lipids such fatty acids and cholesterols for oocyte maturation, and glucocorticoids for ovarian steroidogenesis. Four metabolites, namely, glycerophosphocholine, linoleic acid, progesterone, and valine were significantly lower in DHEA + relative to DHEA- (p < 0.05-0.005). The area under the curves of progesterone glycerophosphocholine, linoleic acid and valine are 0.711, 0.730, 0.785 and 0.818 (p < 0.05-0.01). In DHEA + patients, progesterone positively correlated with IGF-1 (Pearson r: 0.6757, p < 0.01); glycerophosphocholine negatively correlated with AMH (Pearson r: -0.5815; p < 0.05); linoleic acid correlated with estradiol and IGF-1 (Pearson r: 0.7016 and 0.8203, respectively; p < 0.01 for both). In DHEA- patients, valine negatively correlated with serum-free testosterone (Pearson r: -0.8774; p < 0.0001). Using the large-scale immunoassay of 45 cytokines, we observed significantly lower MCP1, IFNγ, LIF and VEGF-D levels in DHEA + relative to DHEA. CONCLUSIONS In POR patients, DHEA supplementation altered the FF metabolome and cytokine profile. The identified four FF metabolites that significantly changed with DHEA may provide information for titrating and monitoring individual DHEA supplementation.
Collapse
Affiliation(s)
- Veronique Viardot-Foucault
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore, 229899 Singapore
| | - Jieliang Zhou
- Translational ‘Omics and Biomarkers Group, KK Research Centre, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore, 229899 Singapore
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yoshihiko Takinami
- Bruker Japan, 3-9 Yokohama City, Kanagawa, 220-0022 Japan
- Present Address: Kanomax Analytical Incorportated, Shimizu Suita City, Osaka Japan
| | - Jerry. K. Y. Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore, 229899 Singapore
- Obstetrics and Gynaecology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Yie Hou Lee
- Translational ‘Omics and Biomarkers Group, KK Research Centre, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore, 229899 Singapore
- Obstetrics and Gynaecology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
- Singapore-MIT Alliance for Research and Technoology, 1 CREATE Way, Singapore, 138602 Singapore
| |
Collapse
|
7
|
Tang L, Xu XH, Xu S, Liu Z, He Q, Li W, Sun J, Shuai W, Mao J, Zhao JY, Jin L. Dysregulated Gln-Glu-α-ketoglutarate axis impairs maternal decidualization and increases the risk of recurrent spontaneous miscarriage. Cell Rep Med 2023; 4:101026. [PMID: 37137303 DOI: 10.1016/j.xcrm.2023.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
Recurrent spontaneous miscarriage (RSM) affects 1%-2% of fertile women worldwide and poses a risk of future pregnancy complications. Increasing evidence has indicated that defective endometrial stromal decidualization is a potential cause of RSM. Here, we perform liquid chromatography with mass spectrometry (LC-MS)-based metabolite profiling in human endometrial stromal cells (ESCs) and differentiated ESCs (DESCs) and find that accumulated α-ketoglutarate (αKG) derived from activated glutaminolysis contributes to maternal decidualization. Contrarily, ESCs obtained from patients with RSM show glutaminolysis blockade and aberrant decidualization. We further find that enhanced Gln-Glu-αKG flux decreases histone methylation and supports ATP production during decidualization. In vivo, feeding mice a Glu-free diet leads to a reduction of αKG, impaired decidualization, and an increase of fetal loss rate. Isotopic tracing approaches demonstrate Gln-dependent oxidative metabolism as a prevalent direction during decidualization. Our results demonstrate an essential prerequisite of Gln-Glu-αKG flux to regulate maternal decidualization, suggesting αKG supplementation as a putative strategy to rectify deficient decidualization in patients with RSM.
Collapse
Affiliation(s)
- Linchen Tang
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Xiang-Hong Xu
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China.
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zeying Liu
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Qizhi He
- Department of Pathology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Wenxuan Li
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Jiaxue Sun
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Wen Shuai
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Jingwen Mao
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Liping Jin
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China.
| |
Collapse
|
8
|
Essaouiba A, Jellali R, Gilard F, Gakière B, Okitsu T, Legallais C, Sakai Y, Leclerc E. Investigation of the Exometabolomic Profiles of Rat Islets of Langerhans Cultured in Microfluidic Biochip. Metabolites 2022; 12:metabo12121270. [PMID: 36557308 PMCID: PMC9786643 DOI: 10.3390/metabo12121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus (DM) is a complex disease with high prevalence of comorbidity and mortality. DM is predicted to reach more than 700 million people by 2045. In recent years, several advanced in vitro models and analytical tools were developed to investigate the pancreatic tissue response to pathological situations and identify therapeutic solutions. Of all the in vitro promising models, cell culture in microfluidic biochip allows the reproduction of in-vivo-like micro-environments. Here, we cultured rat islets of Langerhans using dynamic cultures in microfluidic biochips. The dynamic cultures were compared to static islets cultures in Petri. The islets' exometabolomic signatures, with and without GLP1 and isradipine treatments, were characterized by GC-MS. Compared to Petri, biochip culture contributes to maintaining high secretions of insulin, C-peptide and glucagon. The exometabolomic profiling revealed 22 and 18 metabolites differentially expressed between Petri and biochip on Day 3 and 5. These metabolites illustrated the increase in lipid metabolism, the perturbation of the pentose phosphate pathway and the TCA cycle in biochip. After drug stimulations, the exometabolome of biochip culture appeared more perturbed than the Petri exometabolome. The GLP1 contributed to the increase in the levels of glycolysis, pentose phosphate and glutathione pathways intermediates, whereas isradipine led to reduced levels of lipids and carbohydrates.
Collapse
Affiliation(s)
- Amal Essaouiba
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Rachid Jellali
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
- Correspondence: (R.J.); (E.L.)
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Bâtiment 360, Avenue des Sciences, 91190 Gif sur Yvette, France
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Bâtiment 360, Avenue des Sciences, 91190 Gif sur Yvette, France
| | - Teru Okitsu
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Cécile Legallais
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Eric Leclerc
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Correspondence: (R.J.); (E.L.)
| |
Collapse
|
9
|
The ratio of nicotinic acid to nicotinamide as a microbial biomarker for assessing cell therapy product sterility. Mol Ther Methods Clin Dev 2022; 25:410-424. [PMID: 35573051 PMCID: PMC9065052 DOI: 10.1016/j.omtm.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/10/2022] [Indexed: 11/20/2022]
Abstract
Controlling microbial risks in cell therapy products (CTPs) is important for product safety. Here, we identified the nicotinic acid (NA) to nicotinamide (NAM) ratio as a biomarker that detects a broad spectrum of microbial contaminants in cell cultures. We separately added six different bacterial species into mesenchymal stromal cell and T cell culture and found that NA was uniquely present in these bacteria-contaminated CTPs due to the conversion from NAM by microbial nicotinamidases, which mammals lack. In cells inoculated with 1 × 104 CFUs/mL of different microorganisms, including USP <71> defined organisms, the increase in NA to NAM ratio ranged from 72 to 15,000 times higher than the uncontaminated controls after 24 h. Importantly, only live microorganisms caused increases in this ratio. In cells inoculated with 18 CFUs/mL of Escherichia coli, 20 CFUs/mL of Bacillus subtilis, and 10 CFUs/mL of Candida albicans, significant increase of NA to NAM ratio was detected using LC-MS after 18.5, 12.5, and 24.5 h, respectively. In contrast, compendial sterility test required >24 h to detect the same amount of these three organisms. In conclusion, the NA to NAM ratio is a useful biomarker for detection of early-stage microbial contaminations in CTPs.
Collapse
|
10
|
Li J, Wang L, Ding J, Cheng Y, Diao L, Li L, Zhang Y, Yin T. Multiomics Studies Investigating Recurrent Pregnancy Loss: An Effective Tool for Mechanism Exploration. Front Immunol 2022; 13:826198. [PMID: 35572542 PMCID: PMC9094436 DOI: 10.3389/fimmu.2022.826198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Patients with recurrent pregnancy loss (RPL) account for approximately 1%-5% of women aiming to achieve childbirth. Although studies have shown that RPL is associated with failure of endometrial decidualization, placental dysfunction, and immune microenvironment disorder at the maternal-fetal interface, the exact pathogenesis remains unknown. With the development of high-throughput technology, more studies have focused on the genomics, transcriptomics, proteomics and metabolomics of RPL, and new gene mutations and new biomarkers of RPL have been discovered, providing an opportunity to explore the pathogenesis of RPL from different biological processes. Bioinformatics analyses of these differentially expressed genes, proteins and metabolites also reflect the biological pathways involved in RPL, laying a foundation for further research. In this review, we summarize the findings of omics studies investigating decidual tissue, villous tissue and blood from patients with RPL and identify some possible limitations of current studies.
Collapse
Affiliation(s)
- Jianan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linlin Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jinli Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxiang Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
LC-MS Analysis Revealed the Significantly Different Metabolic Profiles in Spent Culture Media of Human Embryos with Distinct Morphology, Karyotype and Implantation Outcomes. Int J Mol Sci 2022; 23:ijms23052706. [PMID: 35269848 PMCID: PMC8911215 DOI: 10.3390/ijms23052706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
In this study we evaluated possible differences in metabolomic profiles of spent embryo culture media (SECM) of human embryos with distinct morphology, karyotype, and implantation outcomes. A total of 153 samples from embryos of patients undergoing in vitro fertilization (IVF) programs were collected and analyzed by HPLC-MS. Metabolomic profiling and statistical analysis revealed clear clustering of day five SECM from embryos with different morphological classes and karyotype. Profiling of day five SECM from embryos with different implantation outcomes showed 241 significantly changed molecular ions in SECM of successfully implanted embryos. Separate analysis of paired SECM samples on days three and five revealed 46 and 29 molecular signatures respectively, significantly differing in culture media of embryos with a successful outcome. Pathway enrichment analysis suggests certain amino acids, vitamins, and lipid metabolic pathways to be crucial for embryo implantation. Differences between embryos with distinct implantation potential are detectable on the third and fifth day of cultivation that may allow the application of culture medium analysis in different transfer protocols for both fresh and cryopreserved embryos. A combination of traditional morphological criteria with metabolic profiling of SECM may increase implantation rates in assisted reproductive technology programs as well as improve our knowledge of the human embryo metabolism in the early stages of development.
Collapse
|
12
|
Tong J, Lv S, Yang J, Li H, Li W, Zhang C. Decidualization and Related Pregnancy Complications. MATERNAL-FETAL MEDICINE 2022; 4:24-35. [PMID: 40406579 PMCID: PMC12094380 DOI: 10.1097/fm9.0000000000000135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022] Open
Abstract
Decidualization is the differentiation of endometrial stromal cells into secretory decidual stromal cells. Human decidualization involves some amount of signaling molecules and pathways as well as genetic reprogramming, which is driven by the postovulatory rise in progesterone levels and local cyclic adenosine monophosphate production. Decidualization extends from the primary decidual zone to the secondary decidual zone, and then exits through apoptosis. Evidences support that decidual fibroblasts function as the pool of decidual stromal cells during pregnancy. Decidualization undergoes an acute inflammatory phase, an anti-inflammatory secretory phase to the final recession phase. The decidualization of the inner layer of endometrium, termed decidua, is the most critical determinant of pregnancy success, which can promote placenta formation, modulate immune tolerance, foster resistance to oxidative stress, sense embryo quality, and control labor. Failure to adequate decidualization in terms of hormones, biochemistry, and immunology leads to adverse pregnancy outcomes, including diseases such as preeclampsia, miscarriage, premature labor, repeated implantation failures, and some age-related decline in reproductive capacity. The development of animal models and in vitro culture systems combined with emerging technologies provides a powerful system to explore the mechanism of decidualization. However, decidualization is a dynamic, multi-step process, and translating of current research progress into disease predictions and interventions for pregnancy complications remains to be achieved. The study of periodic regeneration and spontaneous decidualization of the endometrium will be beneficial to the diagnosis and treatment of pregnancy diseases.
Collapse
Affiliation(s)
- Jing Tong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Shijian Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Jieqiong Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Hongwanyu Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Weiya Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
13
|
Muter J, Kong CS, Brosens JJ. The Role of Decidual Subpopulations in Implantation, Menstruation and Miscarriage. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:804921. [PMID: 36303960 PMCID: PMC9580781 DOI: 10.3389/frph.2021.804921] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
In each menstrual cycle, the endometrium becomes receptive to embryo implantation while preparing for tissue breakdown and repair. Both pregnancy and menstruation are dependent on spontaneous decidualization of endometrial stromal cells, a progesterone-dependent process that follows rapid, oestrogen-dependent proliferation. During the implantation window, stromal cells mount an acute stress response, which leads to the emergence of functionally distinct decidual subsets, reflecting the level of replication stress incurred during the preceding proliferative phase. Progesterone-dependent, anti-inflammatory decidual cells (DeC) form a robust matrix that accommodates the conceptus whereas pro-inflammatory, progesterone-resistant stressed and senescent decidual cells (senDeC) control tissue remodelling and breakdown. To execute these functions, each decidual subset engages innate immune cells: DeC partner with uterine natural killer (uNK) cells to eliminate senDeC, while senDeC co-opt neutrophils and macrophages to assist with tissue breakdown and repair. Thus, successful transformation of cycling endometrium into the decidua of pregnancy not only requires continuous progesterone signalling but dominance of DeC over senDeC, aided by recruitment and differentiation of circulating NK cells and bone marrow-derived decidual progenitors. We discuss how the frequency of cycles resulting in imbalanced decidual subpopulations may determine the recurrence risk of miscarriage and highlight emerging therapeutic strategies.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- *Correspondence: Joanne Muter
| | - Chow-Seng Kong
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan J. Brosens
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| |
Collapse
|
14
|
Gurung S, Greening DW, Rai A, Poh QH, Evans J, Salamonsen LA. The proteomes of endometrial stromal cell-derived extracellular vesicles following a decidualizing stimulus define the cells' potential for decidualization success. Mol Hum Reprod 2021; 27:6370708. [PMID: 34524461 DOI: 10.1093/molehr/gaab057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Adequate endometrial stromal cell (ESC) decidualization is vital for endometrial health. Given the importance of extracellular vesicles (EVs) in intercellular communication, we investigated how their protein landscape is reprogrammed and dysregulated during decidual response. Small EVs (sEVs) from human ESC-conditioned media at Day-2 and -14 following decidual stimuli were grouped as well- (WD) or poorly decidualized (PD) based on their prolactin secretion and subjected to mass spectrometry-based quantitative proteomics. On Day 2, in PD- versus WD-ESC-sEVs, 17 sEV- proteins were down-regulated (C5, C6; complement/coagulation cascades, and SERPING1, HRG; platelet degranulation and fibrinolysis) and 39 up-regulated (FLNA, COL1A1; focal adhesion, ENO1, PKM; glycolysis/gluconeogenesis, and RAP1B, MSN; leukocyte transendothelial migration). On Day 14, in PD- versus WD-ESC-sEVs, FLNA was down-regulated while 21 proteins were up-regulated involved in complement/coagulation cascades (C3, C6), platelet degranulation (SERPINA4, ITIH4), B-cell receptor signalling and innate immune response (immunoglobulins). Changes from Days 2 to 14 suggested a subsequent response in PD-ESC-sEVs with 89 differentially expressed proteins mostly involved in complement and coagulation cascades (C3, C6, C5), but no change in WD-ESC-sEVs ESC. Poor decidualization was also associated with loss of crucial sEV-proteins for cell adhesion and invasion (ITGA5, PFN1), glycolysis (ALDOA, PGK1) and cytoskeletal reorganization (VCL, RAC1). Overall, this study indicates varied ESC response even prior to decidualization and provides insight into sEVs-proteomes as a benchmark of well-decidualized ESC. It shows distinct variation in sEV-protein composition depending on the ESC decidual response that is critical for embryo implantation, enabling and limiting trophoblast invasion during placentation and sensing a healthy embryo.
Collapse
Affiliation(s)
- Shanti Gurung
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash Health, Monash University, Victoria, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,Central Clinical School, Faulty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Central Clinical School, Faulty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Jemma Evans
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Gynecology Meets Big Data in the Disruptive Innovation Medical Era: State-of-Art and Future Prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105058. [PMID: 34064710 PMCID: PMC8151939 DOI: 10.3390/ijerph18105058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Tremendous scientific and technological achievements have been revolutionizing the current medical era, changing the way in which physicians practice their profession and deliver healthcare provisions. This is due to the convergence of various advancements related to digitalization and the use of information and communication technologies (ICTs)—ranging from the internet of things (IoT) and the internet of medical things (IoMT) to the fields of robotics, virtual and augmented reality, and massively parallel and cloud computing. Further progress has been made in the fields of addictive manufacturing and three-dimensional (3D) printing, sophisticated statistical tools such as big data visualization and analytics (BDVA) and artificial intelligence (AI), the use of mobile and smartphone applications (apps), remote monitoring and wearable sensors, and e-learning, among others. Within this new conceptual framework, big data represents a massive set of data characterized by different properties and features. These can be categorized both from a quantitative and qualitative standpoint, and include data generated from wet-lab and microarrays (molecular big data), databases and registries (clinical/computational big data), imaging techniques (such as radiomics, imaging big data) and web searches (the so-called infodemiology, digital big data). The present review aims to show how big and smart data can revolutionize gynecology by shedding light on female reproductive health, both in terms of physiology and pathophysiology. More specifically, they appear to have potential uses in the field of gynecology to increase its accuracy and precision, stratify patients, provide opportunities for personalized treatment options rather than delivering a package of “one-size-fits-it-all” healthcare management provisions, and enhance its effectiveness at each stage (health promotion, prevention, diagnosis, prognosis, and therapeutics).
Collapse
|