1
|
Dwiputri E, Lestari KD, Tan GHK, Sulijaya B, Soeroso Y, Masulili SLC, Takahashi N, Tabeta K, Tadjoedin FM. Osteoclastogenesis Inhibitor and Antioxidant Properties of Konjac Glucomannan in a Periodontitis Mice Model: An In Vivo Study. Int J Dent 2023; 2023:7400421. [PMID: 37942469 PMCID: PMC10630005 DOI: 10.1155/2023/7400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Background Periodontitis is an inflammatory disease caused by specific microorganisms that gradually damage the periodontal and tooth-supporting tissues, thereby reducing a person's quality of life. Periodontal disease is closely associated with high reactive oxygen species (ROS) levels, with a high receptor activator of nuclear factor kβ ligand (RANKL)/osteoprotegerin (OPG) ratio. Konjac glucomannan (KGM) is produced from the porang root, which has several properties. For example, it can reduce oxidative stress. The current study analyzed the osteoclastogenesis inhibitory and antioxidant properties of KGM based on histomorphometric findings, RANKL/OPG ratio, and ROS levels in the Swiss Webster mouse periodontitis model. Methods Eight-week-old male Swiss Webster mice were divided into the nonligation, nonligation + KGM, ligation + Porphyromonas gingivalis, and ligation + P. gingivalis + KGM groups. KGM suspension was administered for 14 days. Periodontitis induction was performed from 7th to 14th day. On the 14th day, maxillae, gingival, and gingival crevicular fluid samples were collected to assess the histomorphometry of bone damage, gene expression ratio of RANKL/OPG, and ROS protein levels. Results The periodontitis group pretreated with KGM presented with significantly reduced alveolar bone damage, RANKL/OPG ratio, and ROS level than without KGM group. KGM treatment had no harmful/toxic effects in mice. Conclusion Administration of KGM could act as an adjunctive in periodontal therapy by suppressing periodontal disease via osteoclastogenesis inhibitory and antioxidant properties.
Collapse
Affiliation(s)
- Edlyn Dwiputri
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Kartika Dhipta Lestari
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | | | - Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Sri Lelyati C. Masulili
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Naoki Takahashi
- Division of Periodontology, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Fatimah Maria Tadjoedin
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
2
|
Guo X, Huang Z, Ge Q, Yang L, Liang D, Huang Y, Jiang Y, Pathak JL, Wang L, Ge L. Glipizide Alleviates Periodontitis Pathogenicity via Inhibition of Angiogenesis, Osteoclastogenesis and M1/M2 Macrophage Ratio in Periodontal Tissue. Inflammation 2023; 46:1917-1931. [PMID: 37289398 DOI: 10.1007/s10753-023-01850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
New consensus indicates type 2 diabetes mellitus (T2DM) and periodontitis as comorbidity and may share common pathways of disease progression. Sulfonylureas have been reported to improve the periodontal status in periodontitis patients. Glipizide, a sulfonylurea widely used in the treatment of T2DM, has also been reported to inhibit inflammation and angiogenesis. The effect of glipizide on the pathogenicity of periodontitis, however, has not been studied. We developed ligature-induced periodontitis in mice and treated them with different concentrations of glipizide and then analyzed the level of periodontal tissue inflammation, alveolar bone resorption, and osteoclast differentiation. Inflammatory cell infiltration and angiogenesis were analyzed using immunohistochemistry, RT-qPCR, and ELISA. Transwell assay and Western bolt analyzed macrophage migration and polarization. 16S rRNA sequencing analyzed the effect of glipizide on the oral microbial flora. mRNA sequencing of bone marrow-derived macrophages (BMMs) stimulated by P. gingivalis lipopolysaccharide (Pg-LPS) after treatment with glipizide was analyzed. Glipizide decreases alveolar bone resorption, periodontal tissue degradation, and the number of osteoclasts in periodontal tissue affected by periodontitis (PAPT). Glipizide-treated periodontitis mice showed reduced micro-vessel density and leukocyte/macrophage infiltration in PAPT. Glipizide significantly inhibited osteoclast differentiation in vitro experiments. Glipizide treatment did not affect the oral microbiome of periodontitis mice. mRNA sequencing and KEGG analysis showed that glipizide activated PI3K/AKT signaling in LPS-stimulated BMMs. Glipizide inhibited the LPS-induced migration of BMMs but promoted M2/M1 macrophage ratio in LPS-induced BMMs via activation of PI3K/AKT signaling. In conclusion, glipizide inhibits angiogenesis, macrophage inflammatory phenotype, and osteoclastogenesis to alleviate periodontitis pathogenicity suggesting its' possible application in the treatment of periodontitis and diabetes comorbidity.
Collapse
Affiliation(s)
- Xueqi Guo
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Zhijun Huang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Qing Ge
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Luxi Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Dongliang Liang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Yinyin Huang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Yiqin Jiang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Janak Lal Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linhu Ge
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China.
| |
Collapse
|
3
|
Liu Y, Zhong Y, Zheng B, Liu Y. Extracellular vesicles derived from M1 macrophages enhance rat midpalatal suture expansion by promoting initial bone turnover and inflammation. Prog Orthod 2023; 24:34. [PMID: 37661233 PMCID: PMC10475451 DOI: 10.1186/s40510-023-00477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/18/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Midpalatal suture (MPS) expansion can be affected by many factors, and researchers have attempted to regulate the initial inflammatory stage of expansion to optimize clinical outcomes and their underlying mechanisms. This study aimed to investigate the potential effects and mechanisms of M1 macrophage small extracellular vesicles during rat MPS expansion. MATERIALS AND METHODS RAW264.7 cells were induced to M1 or M2 polarization and, small extracellular vesicles were isolated from the polarized macrophages. Male Sprague-Dawley rats (6-7 weeks) were administered 70 ± 5 g expansion force devices for 7 days. Rats with expanders without force served as controls. M1/M2 small extracellular vesicles were injected into the MPS region (50 µg/day) in the M1 and M2 small extracellular vesicle-assisted groups, while 0.9% saline was injected into the expansion-only group. Suture width, bone mass, and morphological changes in the region of interest (ROI) were examined. RESULTS The M1 small extracellular vesicle-assisted group showed a significantly increased MPS suture width in vivo (P < 0.001), and less bone mass was observed in the ROI (P < 0.05). Histological examination showed that the M1 small extracellular vesicle-assisted group exhibited a wider palatal area and obvious fibrous tissue rearrangement. The expression of RANKL and the number of osteoclasts were increased (P < 0.01) in the bony edges, and the p65 protein expression was significantly higher (P < 0.001). CONCLUSIONS M1 macrophage-derived small extracellular vesicles have a positive effect in MPS expansion and increase p65 protein content and RANKL expression, thus promoting bone turnover. This study may contribute to the clinical application of small extracellular vesicles in the expansion of the palatal suture.
Collapse
Affiliation(s)
- Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, 110002, China
| | - Yuan Zhong
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, 110002, China
| | - Bowen Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, 110002, China.
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, 110002, China.
| |
Collapse
|
4
|
Zeng S, Wu Y, Wang L, Huang Y, Huang W, Li Z, Gao W, Jiang S, Ge L, Zhang J. In vivo real-time assessment of developmental defects in enamel of anti-Act1 mice using optical coherence tomography. Heliyon 2023; 9:e16545. [PMID: 37274657 PMCID: PMC10238730 DOI: 10.1016/j.heliyon.2023.e16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
The purpose of this study was to explore the feasibility of using optical coherence tomography (OCT) for real-time and quantitative monitoring of enamel development in gene-edited enamel defect mice. NF-κB activator 1, known as Act1, is associated with many inflammatory diseases. The antisense oligonucleotide of Act1 was inserted after the CD68 gene promoter, which would cover the start region of the Act1 gene and inhibit its transcription. Anti-Act1 mice, gene-edited mice, were successfully constructed and demonstrated amelogenesis imperfecta by scanning electron microscope (SEM) and energy dispersive X-ray (EDX) spectroscopy. Wild-type (WT) mice were used as the control group in this study. WT mice and anti-Act1 mice at 3 weeks old were examined by OCT every week and killed at eight weeks old. Their mandibular bones were dissected and examined by OCT, micro-computed tomography (micro-CT), and SEM. OCT images showed that the outer layer of enamel of anti-Act1 mice was obviously thinner than that of WT mice but no difference in total thickness. When assessing enamel thickness, there was a significant normal linear correlation between these methods. OCT could scan the imperfect developed enamel noninvasively and quickly, providing images of the enamel layers of mouse incisors.
Collapse
Affiliation(s)
- Sujuan Zeng
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Yuejun Wu
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lijing Wang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuhang Huang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Wenyan Huang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Ziling Li
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Weijian Gao
- School of Biomedical Engineering, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Siqing Jiang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lihong Ge
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
- Department of Pediatric Dentistry, Stomatology Hospital of Peking University, Beijing, 100081, China
| | - Jian Zhang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
- School of Biomedical Engineering, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
5
|
Chen Y, Hu Y. Wnt Signaling Activation in Gingival Epithelial Cells and Macrophages of Experimental Periodontitis. Dent J (Basel) 2023; 11:129. [PMID: 37232780 PMCID: PMC10217294 DOI: 10.3390/dj11050129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Objective: Wingless/integrated (Wnt) signaling plays critical roles in maintaining environmental homeostasis and is also involved in the pathogenesis of inflammatory diseases. However, its role in macrophages during periodontitis is not well understood. The present study aims to investigate the interaction between Wnt signaling and macrophages in the context of periodontitis. Methods: Experimental periodontitis was induced in C57/BL6 mice using a Porphyromonas gingivalis (P.g)-associated ligature for 14 days. Immunohistochemistry was performed to study the expression of the pro-inflammatory cytokine tumor necrosis factor (TNF-α), the stabilization of β-catenin, and the macrophage marker F4/80 in the periodontal tissues. The effect of Wnt signaling on TNF-α was examined using Western blot analysis in Raw 264.7 murine macrophages stimulated by Wnt3a-conditioned medium, with or without Wnt3a antibody neutralization, and compared with primary cultured gingival epithelial cells (GECs). The effect of P.g lipopolysaccharide (LPS) on Wnt signaling was assessed by analyzing key components of the Wnt signaling pathway, including the activity of low-density lipoprotein receptor-related protein (LRP) 6 and nuclear accumulation of β-catenin in GEC and Raw 264.7 cells. Results: Over-expressions of TNF-α and activated β-catenin were presented in the macrophages in the gingiva from mice with P.g-associated ligature-induced periodontitis. The expression patterns of TNF-α and activated β-catenin were consistent with the expression of F4/80. In Raw 264.7 cells, activation of the Wnt signaling pathway led to an increase in TNF-α, but this effect was not observed in GEC. Additionally, treatment with LPS induced β-catenin accumulation and LRP6 activation in Raw 264.7 cells, which were blocked by the addition of Dickkopf-1(DKK1). Conclusions: Wnt signaling was aberrantly activated in the macrophages in experimental periodontitis. The activation of Wnt signaling in the macrophages may play a pro-inflammatory role in periodontitis. Targeting specific signaling pathways, such as the Wnt pathway, may hold promise for developing novel therapeutic interventions for periodontitis.
Collapse
Affiliation(s)
| | - Yang Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Li Y, Huang Z, Pan S, Feng Y, He H, Cheng S, Wang L, Wang L, Pathak JL. Resveratrol Alleviates Diabetic Periodontitis-Induced Alveolar Osteocyte Ferroptosis Possibly via Regulation of SLC7A11/GPX4. Nutrients 2023; 15:2115. [PMID: 37432277 DOI: 10.3390/nu15092115] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
The mode and mechanism of diabetic periodontitis-induced alveolar-osteocyte death are still unclear. This study aimed to investigate the occurrence of ferroptosis in alveolar osteocytes during diabetic periodontitis and the therapeutic potential of resveratrol to alleviate osteocyte ferroptosis. Diabetic periodontitis was induced in C57/BL6-male mice and treated with or without resveratrol. Periodontitis pathogenicity was analyzed by micro-CT and histology, and alveolar-osteocyte ferroptosis was analyzed by immunohistochemistry. MLOY4 osteocytes were treated with P. gingivalis-derived lipopolysaccharide (LPS)+advanced glycosylated end products (AGEs) mimicking diabetic periodontitis condition in vitro, with or without resveratrol or ferrostatin-1 (ferroptosis inhibitor). Osteocyte ferroptosis and expression of inflammatory mediators were analyzed. Diabetic periodontitis aggravated periodontitis pathogenicity and inhibited the expression of GPX4 and SLC7A11 in alveolar osteocytes and resveratrol alleviated these effects. LPS+AGEs triggered osteocyte ferroptosis in vitro as indicated by the downregulated GPX4 and SLC7A11, upregulated malondialdehyde, disrupted mitochondrial morphology, and overexpressed pro-inflammatory mediators IL-1β, TNF-α, SOST, RANKL, and IL-6, and ferrostatin-1 or resveratrol treatment reversed these effects. LPS+AGEs upregulated pIKBα and pNF-κB p65 expression in osteocytes, and resveratrol or ferrostatin-1 reversed this effect. In conclusion, diabetic periodontitis triggers alveolar osteocyte ferroptosis possibly via disruption of the SLC7A11/GPX4 axis, and resveratrol has therapeutic potential to correct this biological event.
Collapse
Affiliation(s)
- Yue Li
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Zhijun Huang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuaifei Pan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Yuhui Feng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Haokun He
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuguang Cheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Liping Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Janak Lal Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
7
|
Xu T, Xie K, Wang C, Ivanovski S, Zhou Y. Immunomodulatory nanotherapeutic approaches for periodontal tissue regeneration. NANOSCALE 2023; 15:5992-6008. [PMID: 36896757 DOI: 10.1039/d2nr06149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Periodontitis is an infection-induced inflammatory disease characterized by progressive destruction of tooth supporting tissues, which, if left untreated, can result in tooth loss. The destruction of periodontal tissues is primarily caused by an imbalance between the host immune protection and immune destruction mechanisms. The ultimate goal of periodontal therapy is to eliminate inflammation and promote the repair and regeneration of both hard and soft tissues, so as to restore the physiological structure and function of periodontium. Advancement in nanotechnologies has enabled the development of nanomaterials with immunomodulatory properties for regenerative dentistry. This review discusses the immune mechanisms of the major effector cells in the innate and adaptive immune systems, the physicochemical and biological properties of nanomaterials, and the research advancements in immunomodulatory nanotherapeutic approaches for the management of periodontitis and the regeneration of periodontal tissues. The current challenges, and prospects for future applications of nanomaterials are then discussed so that researchers at the intersections of osteoimmunology, regenerative dentistry and materiobiology will continue to advance the development of nanomaterials for improved periodontal tissue regeneration.
Collapse
Affiliation(s)
- Tian Xu
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Kunke Xie
- Clinical Laboratory, Bo'Ai Hospital of Zhongshan, 6 Chenggui Road, East District, Zhongshan 528403, Guangdong, China
| | - Cong Wang
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| |
Collapse
|
8
|
Weivoda MM, Bradley EW. Macrophages and Bone Remodeling. J Bone Miner Res 2023; 38:359-369. [PMID: 36651575 PMCID: PMC10023335 DOI: 10.1002/jbmr.4773] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Bone remodeling in the adult skeleton facilitates the removal and replacement of damaged and old bone to maintain bone quality. Tight coordination of bone resorption and bone formation during remodeling crucially maintains skeletal mass. Increasing evidence suggests that many cell types beyond osteoclasts and osteoblasts support bone remodeling, including macrophages and other myeloid lineage cells. Herein, we discuss the origin and functions for macrophages in the bone microenvironment, tissue resident macrophages, osteomacs, as well as newly identified osteomorphs that result from osteoclast fission. We also touch on the role of macrophages during inflammatory bone resorption. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Elizabeth W. Bradley
- Department of Orthopedics and Stem Cell Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
9
|
Chen H, Zhang Y, Yu T, Song G, Xu T, Xin T, Lin Y, Han B. Nano-Based Drug Delivery Systems for Periodontal Tissue Regeneration. Pharmaceutics 2022; 14:2250. [PMID: 36297683 PMCID: PMC9612159 DOI: 10.3390/pharmaceutics14102250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
Periodontitis is a dysbiotic biofilm-induced and host-mediated inflammatory disease of tooth supporting tissues that leads to progressive destruction of periodontal ligament and alveolar bone, thereby resulting in gingival recession, deep periodontal pockets, tooth mobility and exfoliation, and aesthetically and functionally compromised dentition. Due to the improved biopharmaceutical and pharmacokinetic properties and targeted and controlled drug release, nano-based drug delivery systems have emerged as a promising strategy for the treatment of periodontal defects, allowing for increased efficacy and safety in controlling local inflammation, establishing a regenerative microenvironment, and regaining bone and attachments. This review provides an overview of nano-based drug delivery systems and illustrates their practical applications, future prospects, and limitations in the field of periodontal tissue regeneration.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Guangying Song
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianmin Xu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
10
|
Wang Y, Yu H, Li J, Liu W, Yu S, Lv P, Zhao L, Wang X, Zuo Z, Liu X. Th22 cells induce Müller cell activation via the Act1/TRAF6 pathway in diabetic retinopathy. Cell Tissue Res 2022; 390:367-383. [PMID: 36201050 DOI: 10.1007/s00441-022-03689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
T helper 22 (Th22) cells have been implicated in diabetic retinopathy (DR), but it remains unclear whether Th22 cells involve in the pathogenesis of DR. To investigate the role of Th22 cells in DR mice, the animal models were established by intraperitoneal injection of STZ and confirmed by fundus fluorescein angiography and retinal haematoxylin-eosin staining. IL-22BP was administered by intravitreal injection. IL-22 level was measured by ELISA in vivo and in vitro. The expression of IL-22Rα1 in the retina was assessed by immunofluorescence. We assessed GFAP, VEGF, ICAM-1, inflammatory-associated factors and the integrity of blood-retinal barrier in control, DR, IL-22BP, and sham group. Müller cells were co-cultured with Th22 cells, and the expression of the above proteins was measured by immunoblotting. Plasmid transfection technique was used to silence Act1 gene in Müller cells. Results in vivo and in vitro indicated that Th22 cells infiltrated into the DR retinal and IL-22Rα1 expressed in Müller cells. Th22 cells promoted Müller cells activation and inflammatory factor secretion by secreting IL-22 compared with high-glucose stimulation alone. In addition, IL-22BP ameliorated the pathological alterations of the retina in DR. Inhibition of the inflammatory signalling cascade through Act1 knockdown alleviated DR-like pathology. All in all, the results suggested that Th22 cells infiltrated into the retina and secreted IL-22 in DR, and then IL-22 binding with IL-22Rα1 activated the Act1/TRAF6 signal pathway, and promoted the inflammatory of Müller cells and involved the pathogenesis of DR.
Collapse
Affiliation(s)
- Yufei Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Hongdan Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Jing Li
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Wenqiang Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Shengxue Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Pan Lv
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lipan Zhao
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xiaobai Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Zhongfu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, China.
| | - Xuezheng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
11
|
Wang L, Liang D, Huang Y, Chen Y, Yang X, Huang Z, Jiang Y, Su H, Wang L, Pathak JL, Ge L. SAP deficiency aggravates periodontitis possibly via C5a-C5aR signaling-mediated defective macrophage phagocytosis of Porphyromonas gingivalis. J Adv Res 2022:S2090-1232(22)00218-1. [PMID: 36243399 PMCID: PMC10403661 DOI: 10.1016/j.jare.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Serum amyloid P component (SAP) regulates the innate immune system and microbial diseases. Periodontitis is an inflammatory oral disease developed by the host immune system's interaction with the dysbiotic oral microbiome, thereby SAP could play a role in periodontitis pathogenicity. OBJECTIVES To investigate the role of SAP in oral microbiome modulation and peridontitis pathogenicity. METHODS In this study, wildtype and SAP-knockout (KO) mice were used. Ligature-based periodontitis was developed in mice. Oral microbiome diversity was analyzed by 16 s rRNA sequencing. Macrophages and Porphyromonas gingivalis (P. gingivalis) co-culture system analyzed the effect of SAP in macrophage phagocytosis of P. gingivalis. RESULTS The level of SAP was upregulated in the periodontitis-affected periodontium of humans and mice but not in the liver and blood circulation. Periodontal macrophages were the key source of upregulated SAP in periodontitis. SAP-KO aggravated periodontal inflammation, periodontitis, and a higher number of M1-type inflammatory macrophage infiltration in the periodontium. The oral microbiome of SAP-KO periodontitis mice was altered with a higher abundance of Porphyromonas at the genus level. SAP-KO macrophages showed compromised phagocytosis of P. gingivalis in the co-culture system. Co-culture of SAP-KO macrophages and P. gingivalis induced the C5a expression and exogenous SAP treatment nullified this effect. Exogenous recombinant SAP treatment did not affect P. gingivalis growth and opsonization. PMX205, an antagonist of C5a, treatment robustly enhanced P. gingivalis phagocytosis by SAP-KO macrophages, indicating the involvement of the C5a-C5aR signaling in the compromised P. gingivalis phagocytosis by SAP-KO macrophages. CONCLUSION SAP deficiency aggravates periodontitis possibly via C5a-C5aR signaling-mediated defective macrophage phagocytosis of P. gingivalis. A higher abundance of P. gingivalis during SAP deficiency could promote M1 macrophage polarization and periodontitis. This finding suggests the possible protecting role of elevated levels of periodontal SAP against periodontitis progression.
Collapse
|
12
|
Dai Z, Zheng W, Li S. Receptor activator of nuclear factor-κB ligand and tumor necrosis factor-α promotes osteoclast differentiation through the exosomes of inflammatory periodontal ligament stem cells. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2022; 40:377-385. [PMID: 38596952 PMCID: PMC9396430 DOI: 10.7518/hxkq.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/08/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Pathological bone resorption is common in chronic periodontitis. However, the effect of exosomes (Exo) secreted by periodontal ligament stem cells (PDLSCs) on bone resorption is unclear. This study explored the Exo of inflammatory PDLSCs, their protein components, and their effects on osteoclast differentiation. METHODS PDLSCs were isolated from the periodontal ligament tissues of orthodontic patients and those with chronic periodontitis. The surface markers of PDLSCs were detected by flow cytometry. Exo were characterized by Western blot, transmission electron microscope (TEM), bicinchoninic acid assay (BCA), nanosight tracking analysis (NTA). The protein components of Exo were detected by protein profiling. The expression levels of differentially expressed proteins tumor necrosis factor-α (TNF-α), receptor activator of nuclear factor-κB ligand (RANKL), interleukin (IL)-1α, transforming growth factor β (TGF-β), and bone morphogenetic protein 2 (BMP-2) were verified by enzyme linked immunosorbent assay (ELISA). Then, 10, 100, and 1 000 μg·mL-1 of Exo-CP or Exo-WT were added to RAW264.7 medium, and the expression levels of osteoclast-related indicators were detected by real time quantitative polymerase chain reaction (RT-qPCR), Western blot, and tartrate resistant acid phosphatase (TRAP) staining at 5 days. Experimental data were statistically analyzed using SPSS 24.0 software. RESULTS The differentially expressed proteins enriched in Exo-CP were mainly related to the tumor necrosis factor (TNF) signaling, osteoclast differentiation, and nuclear transcription factor κB (NF-κB) signaling pathways. ELISA experiments confirmed Exo-CP had high expression of TNF-α, RANKL, and IL-1α and low expression of TGF-β1 and BMP-2 (P<0.05). Adding Exo-CP to RAW264.7 significantly increased the expression of mRNA and proteins related to osteoclast differentiation of cells. In a concentration-dependent manner, the effect of Exo-CP on osteoclast differentiation at concentrations of 100 and 1 000 μg·mL-1 was significantly higher than that on the 10 μg·mL-1 concentration group (P<0.05). CONCLUSIONS Pathological bone resorption of chronic periodontitis may be caused by the activation of Exo-CP to promote osteoclast differentiation. The main protein in Exo may be RANKL and TNF-α. This research provides a new perspective on pathological bone resorption in chronic periodontitis.
Collapse
Affiliation(s)
- Zhenning Dai
- Dept. of Stomatology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, China
| | - Weihan Zheng
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Guangzhou 510630, China
| | - Shiyu Li
- Dept. of Stomatology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, China
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Guangzhou 510630, China
| |
Collapse
|
13
|
Role of Cardiomyocyte-Derived Exosomal MicroRNA-146a-5p in Macrophage Polarization and Activation. DISEASE MARKERS 2022; 2022:2948578. [PMID: 35548775 PMCID: PMC9085364 DOI: 10.1155/2022/2948578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022]
Abstract
Myocardial infarction arises from an excessive or prolonged inflammatory response, leading to ventricular remodeling or impaired cardiac function. Macrophages exhibit different polarization types associated with inflammation both at steady state and after myocardial infarction. Exosomal miR-146a-5p has been identified as an important molecule in the cardiovascular field in recent years. However, the effect of cardiomyocyte-derived exosomal miR-146a-5p on macrophages has not yet been elucidated. Initially, we found that exosomes with low expression of miR-146a-5p derived from myocardial infarction tissues modulated macrophage polarization. To determine whether cardiomyocyte-derived exosomal miR-146a-5p mediated macrophage polarization, we treated macrophages with exosomes rich in miR-146a-5p collected from neonatal mouse cardiomyocytes. The effects of exosomal miR-146a-5p on macrophage polarization were measured using RT-qPCR, transwell assays, and western blotting. The results showed that the increased expression of miR-146a-5p promoted M1 macrophage polarization, inhibited M2 macrophage polarization, and increased the expression of VEGFA. However, the decreased expression of exosomalmiR-146a-5p showed the opposite trends. Interestingly, in contrast to treatment with the solitary miR-146a-5p mimic, exosomal miR-146a-5p derived from neonatal mouse cardiomyocytes reduced TNFα and iNOS expression. In addition, when macrophages were activated by the miR-146a-5p mimic or exosomal miR-146a-5p, the expression of TNF receptor-associated factor 6 (TRAF6), a target gene of miR-146a-5p, was reduced significantly. Taken together, these findings indicate that exosomal miR-146a-5p derived from cardiomyocytes could stimulate M1 macrophage polarization to induce an inflammatory reaction, while targeting TRAF6, exerting an anti-inflammatory effect. Exosomal miR-146a-5p plays important roles in macrophages, illuminating a novel potential therapeutic target in myocardial infarction.
Collapse
|
14
|
Chen G, Sun Q, Cai Q, Zhou H. Outer Membrane Vesicles From Fusobacterium nucleatum Switch M0-Like Macrophages Toward the M1 Phenotype to Destroy Periodontal Tissues in Mice. Front Microbiol 2022; 13:815638. [PMID: 35391731 PMCID: PMC8981991 DOI: 10.3389/fmicb.2022.815638] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is a chronic inflammatory oral disease that affects nearly 50% of all adults. Fusobacterium nucleatum (F. nucleatum) is known to be involved in the formation and development of periodontitis. Outer membrane vesicles (OMVs) harboring toxic bacterial components are continuously released during F. nucleatum growth and regulate the extent of the inflammatory response by controlling the functions of immune and non-immune cells in tissues. Macrophages are important immune cells in periodontal tissue that resist pathogen invasion and play an important role in the pathophysiological process of periodontitis. However, the role of the interaction between F. nucleatum OMVs and macrophages in the occurrence and development of periodontitis has not been studied. The purpose of this study was to clarify the effect of F. nucleatum OMVs on the polarization of macrophages and the roles of this specific polarization and F. nucleatum OMVs in the pathophysiology of periodontitis. The periodontitis model was established by inducing ligation in C57BL/6 mice as previously described. Micro-CT, RT-qPCR, hematoxylin-eosin (H&E) and tartrate acid phosphatase (TRAP) staining assays were performed to analyze the periodontal tissue, alveolar bone loss, number of osteoclasts and expression of inflammatory factors in gingival tissue. The changes in the state and cytokine secretion of bone marrow-derived macrophages (BMDMs) stimulated by F. nucleatum OMVs were observed in vivo by confocal microscopy, flow cytometry, Western blot and ELISA. Mouse gingival fibroblasts (MGFs) were isolated and then cocultured with macrophages. The effects of F. nucleatum OMVs on the proliferation and apoptosis of MGFs were analyzed by flow cytometry and lactate dehydrogenase (LDH) assays. The periodontitis symptoms of mice in the F. nucleatum OMVs + ligation group were more serious than those of mice in the simple ligation group, with more osteoclasts and more inflammatory factors (IL-1β, IL-6, and TNF-α) being observed in their gingival tissues. M0 macrophages transformed into M1 macrophages after the stimulation of BMDMs with F. nucleatum OMVs, and the M1 macrophages then released more inflammatory cytokines. Analysis of the coculture model showed that the MGF apoptosis and LDH release in the inflammatory environment were increased by F. nucleatum OMV treatment. In conclusion, F. nucleatum OMVs were shown to aggravate periodontitis, alveolar bone loss and the number of osteoclasts in an animal model of periodontitis. F. nucleatum OMVs promoted the polarization of macrophages toward the proinflammatory M1 phenotype, and the inflammatory environment further aggravated the toxicity of F. nucleatum OMVs on MGFs. These results suggest that M1 macrophages and F. nucleatum OMVs play roles in the occurrence and development of periodontitis.
Collapse
Affiliation(s)
- Gang Chen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Qiang Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - QiaoLing Cai
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - HongWei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Abd MK, Alsamarai ATS, A-Qader AM. Evaluation the level of Interleukin-6 and total protein levels on women with breast cancer. INTERNATIONAL CONFERENCE OF CHEMISTRY AND PETROCHEMICAL TECHNIQUES (ICCPT) 2022. [DOI: 10.1063/5.0094134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Luo Q, Li X, Zhong W, Cao W, Zhu M, Wu A, Chen W, Ye Z, Han Q, Natarajan D, Pathak JL, Zhang Q. Dicalcium silicate-induced mitochondrial dysfunction and autophagy-mediated macrophagic inflammation promotes osteogenic differentiation of BMSCs. Regen Biomater 2021; 9:rbab075. [PMID: 35480858 PMCID: PMC9039510 DOI: 10.1093/rb/rbab075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Dicalcium silicate (Ca2SiO4, C2S) has osteogenic potential but induces macrophagic inflammation. Mitochondrial function plays a vital role in macrophage polarization and macrophagic inflammation. The mitochondrial function of C2S-treated macrophages is still unclear. This study hypothesized: (i) the C2S modulates mitochondrial function and autophagy in macrophages to regulate macrophagic inflammation, and (ii) C2S-induced macrophagic inflammation regulates osteogenesis. We used RAW264.7 cells as a model of macrophage. The C2S (75-150 μg/ml) extract was used to analyze the macrophagic mitochondrial function and macrophage-mediated effect on osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (BMSCs). The results showed that C2S extract (150 μg/ml) induced TNF-α, IL-1β and IL-6 production in macrophages. C2S extract (150 μg/ml) enhanced reactive oxygen species level and intracellular calcium level but reduced mitochondrial membrane potential and ATP production. TEM images showed reduced mitochondrial abundance and altered the mitochondrial morphology in C2S (150 μg/ml)-treated macrophages. Protein level expression of PINK1, Parkin, Beclin1 and LC3 was upregulated but TOMM20 was downregulated. mRNA sequencing and KEGG analysis showed that C2S-induced differentially expressed mRNAs in macrophages were mainly distributed in the essential signaling pathways involved in mitochondrial function and autophagy. The conditioned medium from C2S-treated macrophage robustly promoted osteogenic differentiation in BMSCs. In conclusion, our results indicate mitochondrial dysfunction and autophagy as the possible mechanism of C2S-induced macrophagic inflammation. The promotion of osteogenic differentiation of BMSCs by the C2S-induced macrophagic inflammation suggests the potential application of C2S in developing immunomodulatory bone grafts.
Collapse
Affiliation(s)
- Qianting Luo
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Xingyang Li
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wenchao Zhong
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wei Cao
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam 1081LA, The Netherlands
| | - Mingjing Zhu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Antong Wu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wanyi Chen
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Qiao Han
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| |
Collapse
|
17
|
Sun X, Gao J, Meng X, Lu X, Zhang L, Chen R. Polarized Macrophages in Periodontitis: Characteristics, Function, and Molecular Signaling. Front Immunol 2021; 12:763334. [PMID: 34950140 PMCID: PMC8688840 DOI: 10.3389/fimmu.2021.763334] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontitis (PD) is a common chronic infectious disease. The local inflammatory response in the host may cause the destruction of supporting periodontal tissue. Macrophages play a variety of roles in PD, including regulatory and phagocytosis. Moreover, under the induction of different factors, macrophages polarize and form different functional phenotypes. Among them, M1-type macrophages with proinflammatory functions and M2-type macrophages with anti-inflammatory functions are the most representative, and both of them can regulate the tendency of the immune system to exert proinflammatory or anti-inflammatory functions. M1 and M2 macrophages are involved in the destructive and reparative stages of PD. Due to the complex microenvironment of PD, the dynamic development of PD, and various local mediators, increasing attention has been given to the study of macrophage polarization in PD. This review summarizes the role of macrophage polarization in the development of PD and its research progress.
Collapse
Affiliation(s)
- Xiaoyu Sun
- *Correspondence: Lei Zhang, ; Xiaoyu Sun,
| | | | | | | | - Lei Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Periodontology, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | | |
Collapse
|
18
|
Mooney EC, Holden SE, Xia XJ, Li Y, Jiang M, Banson CN, Zhu B, Sahingur SE. Quercetin Preserves Oral Cavity Health by Mitigating Inflammation and Microbial Dysbiosis. Front Immunol 2021; 12:774273. [PMID: 34899728 PMCID: PMC8663773 DOI: 10.3389/fimmu.2021.774273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Failure to attenuate inflammation coupled with consequent microbiota changes drives the development of bone-destructive periodontitis. Quercetin, a plant-derived polyphenolic flavonoid, has been linked with health benefits in both humans and animals. Using a systematic approach, we investigated the effect of orally delivered Quercetin on host inflammatory response, oral microbial composition and periodontal disease phenotype. In vivo, quercetin supplementation diminished gingival cytokine expression, inflammatory cell infiltrate and alveolar bone loss. Microbiome analyses revealed a healthier oral microbial composition in Quercetin-treated versus vehicle-treated group characterized by reduction in the number of pathogenic species including Enterococcus, Neisseria and Pseudomonas and increase in the number of non-pathogenic Streptococcus sp. and bacterial diversity. In vitro, Quercetin diminished inflammatory cytokine production through modulating NF-κB:A20 axis in human macrophages following challenge with oral bacteria and TLR agonists. Collectively, our findings reveal that Quercetin supplement instigates a balanced periodontal tissue homeostasis through limiting inflammation and fostering an oral cavity microenvironment conducive of symbiotic microbiota associated with health. This proof of concept study provides key evidence for translational studies to improve overall health.
Collapse
Affiliation(s)
- Erin C. Mooney
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sara E. Holden
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Xia-Juan Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yajie Li
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Camille N. Banson
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Zhu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Lin P, Niimi H, Ohsugi Y, Tsuchiya Y, Shimohira T, Komatsu K, Liu A, Shiba T, Aoki A, Iwata T, Katagiri S. Application of Ligature-Induced Periodontitis in Mice to Explore the Molecular Mechanism of Periodontal Disease. Int J Mol Sci 2021; 22:ijms22168900. [PMID: 34445604 PMCID: PMC8396362 DOI: 10.3390/ijms22168900] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease characterized by the destruction of the periodontium. In the last decade, a new murine model of periodontitis has been widely used to simulate alveolar bone resorption and periodontal soft tissue destruction by ligation. Typically, 3-0 to 9-0 silks are selected for ligation around the molars in mice, and significant bone loss and inflammatory infiltration are observed within a week. The ligature-maintained period can vary according to specific aims. We reviewed the findings on the interaction of systemic diseases with periodontitis, periodontal tissue destruction, the immunological and bacteriological responses, and new treatments. In these studies, the activation of osteoclasts, upregulation of pro-inflammatory factors, and excessive immune response have been considered as major factors in periodontal disruption. Multiple genes identified in periodontal tissues partly reflect the complexity of the pathogenesis of periodontitis. The effects of novel treatment methods on periodontitis have also been evaluated in a ligature-induced periodontitis model in mice. This model cannot completely represent all aspects of periodontitis in humans but is considered an effective method for the exploration of its mechanisms. Through this review, we aimed to provide evidence and enlightenment for future studies planning to use this model.
Collapse
Affiliation(s)
- Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| |
Collapse
|