1
|
Mitchell W, Goeminne LJE, Tyshkovskiy A, Zhang S, Chen JY, Paulo JA, Pierce KA, Choy AH, Clish CB, Gygi SP, Gladyshev VN. Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation. eLife 2024; 12:RP90579. [PMID: 38517750 PMCID: PMC10959535 DOI: 10.7554/elife.90579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Partial reprogramming by cyclic short-term expression of Yamanaka factors holds promise for shifting cells to younger states and consequently delaying the onset of many diseases of aging. However, the delivery of transgenes and potential risk of teratoma formation present challenges for in vivo applications. Recent advances include the use of cocktails of compounds to reprogram somatic cells, but the characteristics and mechanisms of partial cellular reprogramming by chemicals remain unclear. Here, we report a multi-omics characterization of partial chemical reprogramming in fibroblasts from young and aged mice. We measured the effects of partial chemical reprogramming on the epigenome, transcriptome, proteome, phosphoproteome, and metabolome. At the transcriptome, proteome, and phosphoproteome levels, we saw widescale changes induced by this treatment, with the most notable signature being an upregulation of mitochondrial oxidative phosphorylation. Furthermore, at the metabolome level, we observed a reduction in the accumulation of aging-related metabolites. Using both transcriptomic and epigenetic clock-based analyses, we show that partial chemical reprogramming reduces the biological age of mouse fibroblasts. We demonstrate that these changes have functional impacts, as evidenced by changes in cellular respiration and mitochondrial membrane potential. Taken together, these results illuminate the potential for chemical reprogramming reagents to rejuvenate aged biological systems and warrant further investigation into adapting these approaches for in vivo age reversal.
Collapse
Affiliation(s)
- Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Ludger JE Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Sirui Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Julie Y Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Kerry A Pierce
- Broad Institute of MIT and HarvardCambridgeUnited States
| | | | - Clary B Clish
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
2
|
Mitchell W, Goeminne LJ, Tyshkovskiy A, Zhang S, Chen JY, Paulo JA, Pierce KA, Choy AH, Clish CB, Gygi SP, Gladyshev VN. Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.546730. [PMID: 37425825 PMCID: PMC10327104 DOI: 10.1101/2023.06.30.546730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Partial reprogramming by cyclic short-term expression of Yamanaka factors holds promise for shifting cells to younger states and consequently delaying the onset of many diseases of aging. However, the delivery of transgenes and potential risk of teratoma formation present challenges for in vivo applications. Recent advances include the use of cocktails of compounds to reprogram somatic cells, but the characteristics and mechanisms of partial cellular reprogramming by chemicals remain unclear. Here, we report a multi-omics characterization of partial chemical reprogramming in fibroblasts from young and aged mice. We measured the effects of partial chemical reprogramming on the epigenome, transcriptome, proteome, phosphoproteome, and metabolome. At the transcriptome, proteome, and phosphoproteome levels, we saw widescale changes induced by this treatment, with the most notable signature being an upregulation of mitochondrial oxidative phosphorylation. Furthermore, at the metabolome level, we observed a reduction in the accumulation of aging-related metabolites. Using both transcriptomic and epigenetic clock-based analyses, we show that partial chemical reprogramming reduces the biological age of mouse fibroblasts. We demonstrate that these changes have functional impacts, as evidenced by changes in cellular respiration and mitochondrial membrane potential. Taken together, these results illuminate the potential for chemical reprogramming reagents to rejuvenate aged biological systems and warrant further investigation into adapting these approaches for in vivo age reversal.
Collapse
Affiliation(s)
- Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Ludger J.E. Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Sirui Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Julie Y. Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 United States
| | - Kerry A. Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Angelina H. Choy
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 United States
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| |
Collapse
|
3
|
González-Fernández V, Sevilla A. Understanding the Molecular Basis of iPSC Reprogrammed Cells to Fulfil Their Expectations in Future Clinical Applications. Cells 2022; 11:cells11172714. [PMID: 36078122 PMCID: PMC9454435 DOI: 10.3390/cells11172714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Verónica González-Fernández
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Ana Sevilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
4
|
Mazloom AR, Xu H, Reig-Palou J, Vasileva A, Román AC, Mulero-Navarro S, Lemischka IR, Sevilla A. Esrrb Regulates Specific Feed-Forward Loops to Transit From Pluripotency Into Early Stages of Differentiation. Front Cell Dev Biol 2022; 10:820255. [PMID: 35652095 PMCID: PMC9149258 DOI: 10.3389/fcell.2022.820255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 01/15/2023] Open
Abstract
Characterization of pluripotent states, in which cells can both self-renew or differentiate, with the irreversible loss of pluripotency, are important research areas in developmental biology. Although microRNAs (miRNAs) have been shown to play a relevant role in cellular differentiation, the role of miRNAs integrated into gene regulatory networks and its dynamic changes during these early stages of embryonic stem cell (ESC) differentiation remain elusive. Here we describe the dynamic transcriptional regulatory circuitry of stem cells that incorporate protein-coding and miRNA genes based on miRNA array expression and quantitative sequencing of short transcripts upon the downregulation of the Estrogen Related Receptor Beta (Esrrb). The data reveals how Esrrb, a key stem cell transcription factor, regulates a specific stem cell miRNA expression program and integrates dynamic changes of feed-forward loops contributing to the early stages of cell differentiation upon its downregulation. Together these findings provide new insights on the architecture of the combined transcriptional post-transcriptional regulatory network in embryonic stem cells.
Collapse
Affiliation(s)
- Amin R. Mazloom
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Huilei Xu
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jaume Reig-Palou
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ana Vasileva
- Center for Radiological Research, Columbia University, New York, NY, United States
| | - Angel-Carlos Román
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Ihor R. Lemischka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ana Sevilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- *Correspondence: Ana Sevilla,
| |
Collapse
|
5
|
Vojtek M, Zhang J, Sun J, Zhang M, Chambers I. Differential repression of Otx2 underlies the capacity of NANOG and ESRRB to induce germline entry. Stem Cell Reports 2021; 17:35-42. [PMID: 34971561 PMCID: PMC8758940 DOI: 10.1016/j.stemcr.2021.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022] Open
Abstract
Primordial germ cells (PGCs) arise from cells of the post-implantation epiblast in response to cytokine signaling. PGC development can be recapitulated in vitro by differentiating epiblast-like cells (EpiLCs) into PGC-like cells (PGCLCs) through cytokine exposure. Interestingly, the cytokine requirement for PGCLC induction can be bypassed by enforced expression of the transcription factor (TF) NANOG. However, the underlying mechanisms are not fully elucidated. Here, we show that NANOG mediates Otx2 downregulation in the absence of cytokines and that this is essential for PGCLC induction by NANOG. Moreover, the direct NANOG target gene Esrrb, which can substitute for several NANOG functions, does not downregulate Otx2 when overexpressed in EpiLCs and cannot promote PGCLC specification. However, expression of ESRRB in Otx2+/− EpiLCs rescues emergence of PGCLCs. This study illuminates the interplay of TFs occurring at the earliest stages of PGC specification. NANOG overexpression induces cytokine-free PGCLC specification by repressing Otx2 Enforced OTX2 expression prevents NANOG-induced germline entry ESRRB overexpression cannot repress Otx2 or induce cytokine-free germline entry Otx2 heterozygosity enables ESRRB to induce cytokine-free PGCLC specification
Collapse
Affiliation(s)
- Matúš Vojtek
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | - Jingchao Zhang
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | - Juanjuan Sun
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Man Zhang
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China; The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland.
| |
Collapse
|
6
|
Yu S, Zhang R, Shen Q, Zhu Z, Zhang J, Wu X, Zhao W, Li N, Yang F, Wei H, Hua J. ESRRB Facilitates the Conversion of Trophoblast-Like Stem Cells From Induced Pluripotent Stem Cells by Directly Regulating CDX2. Front Cell Dev Biol 2021; 9:712224. [PMID: 34616727 PMCID: PMC8488167 DOI: 10.3389/fcell.2021.712224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Porcine-induced pluripotent stem cells (piPSCs) could serve as a great model system for human stem cell preclinical research. However, the pluripotency gene network of piPSCs, especially the function for the core transcription factor estrogen-related receptor beta (ESRRB), was poorly understood. Here, we constructed ESRRB-overexpressing piPSCs (ESRRB-piPSCs). Compared with the control piPSCs (CON-piPSCs), the ESRRB-piPSCs showed flat, monolayered colony morphology. Moreover, the ESRRB-piPSCs showed greater chimeric capacity into trophectoderm than CON-piPSCs. We found that ESRRB could directly regulate the expressions of trophoblast stem cell (TSC)-specific markers, including KRT8, KRT18 and CDX2, through binding to their promoter regions. Mutational analysis proved that the N-terminus zinc finger domain is indispensable for ESRRB to regulate the TSC markers. Furthermore, this regulation needs the participation of OCT4. Accordingly, the cooperation between ESRRB and OCT4 facilitates the conversion from pluripotent state to the trophoblast-like state. Our results demonstrated a unique and crucial role of ESRRB in determining piPSCs fate, and shed new light on the molecular mechanism underlying the segregation of embryonic and extra-embryonic lineages.
Collapse
Affiliation(s)
- Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Rui Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Wenxu Zhao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Fan Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Hongjiang Wei
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| |
Collapse
|