1
|
Sakinah-Syed G, Liew JS, Abdul Majid N, Inche Zainal Abidin SA. Alteration of primary cilia and intraflagellar transport 20 (IFT20) expression in oral squamous cell carcinoma (OSCC) cell lines. PeerJ 2025; 13:e18931. [PMID: 40017656 PMCID: PMC11867036 DOI: 10.7717/peerj.18931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
Background Aberrations in primary cilia expression and intraflagellar transport (IFT) protein function have been implicated in tumourigenesis. This study explores the relationship between the alteration of primary cilia and tumourigenesis by investigating primary cilia expression and the role of IFT20 in regulating matrix metalloproteinase 9 (MMP-9) expression in oral squamous cell carcinoma (OSCC) cell lines. Methods The frequency and length of primary cilia were determined in OKF6-TERT2 cells, HSC-2 cells, and HSC-3 cells using immunofluorescence. Additionally, primary cilia presence in non-proliferating OSCC cells was examined. OSCC cells were treated with either small interfering RNA (siRNA) negative control or siRNA targeting IFT20 for functional analysis. mRNA expression levels of IFT20 and MMP-9 were quantified using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results Results showed that HSC-2 cells exhibit abundant primary cilia when cultured in low serum media (2% serum) for 48 h, followed by serum starvation for over 72 h. No significant changes in cilia expression were observed in HSC-3 cells compared to OKF6-TERT2 cells. Ciliated cells were found in non-proliferating HSC-2 and HSC-3 cells. OSCC cells showed longer cilia than OKF6-TERT2 cells, indicating ciliary abnormalities. Changes in ciliation and cilium length of OSCC cells were accompanied by increased expression of IFT20, an intraflagellar transport protein crucial for the primary cilia assembly. However, IFT20 knockdown did not affect MMP-9 at the mRNA level in these cells. Conclusions This study reveals the differences in primary cilia expression among OSCC cells. Furthermore, the increased abundance and elongation of primary cilia in OSCC cells are accompanied by elevated expression of IFT20. Nonetheless, IFT20 did not affect MMP-9 mRNA expression in OSCC cells.
Collapse
Affiliation(s)
- Gulam Sakinah-Syed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| | - Jia Shi Liew
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| | - Siti Amalina Inche Zainal Abidin
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
3
|
Lee J, Kim Y, Ataliotis P, Kim HG, Kim DW, Bennett DC, Brown NA, Layman LC, Kim SH. Coordination of canonical and noncanonical Hedgehog signalling pathways mediated by WDR11 during primordial germ cell development. Sci Rep 2023; 13:12309. [PMID: 37516749 PMCID: PMC10387110 DOI: 10.1038/s41598-023-38017-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2023] Open
Abstract
WDR11, a gene associated with Kallmann syndrome, is important in reproductive system development but molecular understanding of its action remains incomplete. We previously reported that Wdr11-deficient embryos exhibit defective ciliogenesis and developmental defects associated with Hedgehog (HH) signalling. Here we demonstrate that WDR11 is required for primordial germ cell (PGC) development, regulating canonical and noncanonical HH signalling in parallel. Loss of WDR11 disrupts PGC motility and proliferation driven by the cilia-independent, PTCH2/GAS1-dependent noncanonical HH pathway. WDR11 modulates the growth of somatic cells surrounding PGCs by regulating the cilia-dependent, PTCH1/BOC-dependent canonical HH pathway. We reveal that PTCH1/BOC or PTCH2/GAS1 receptor context dictates SMO localisation inside or outside of cilia, respectively, and loss of WDR11 affects the signalling responses of SMO in both situations. We show that GAS1 is induced by PTCH2-specific HH signalling, which is lost in the absence of WDR11. We also provide evidence supporting a role for WDR11 in ciliogenesis through regulation of anterograde intraflagellar transport potentially via its interaction with IFT20. Since WDR11 is a target of noncanonical SMO signalling, WDR11 represents a novel mechanism by which noncanonical and canonical HH signals communicate and cooperate.
Collapse
Affiliation(s)
- Jiyoung Lee
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Kernel Diagnostic Laboratories LTD, London, UK
| | - Yeonjoo Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- The Babraham Institute, Cambridge, UK
| | - Paris Ataliotis
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Institute for Medical and Biomedical Education, St. George's, University of London, London, UK
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Dae-Won Kim
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Nigel A Brown
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Department of Neuroscience and Regenerative Medicine, Department of Physiology, Medical College of Georgia, Augusta University, Augusta, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.
| |
Collapse
|
4
|
Carotenuto P, Gradilone SA, Franco B. Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes (Basel) 2023; 14:1428. [PMID: 37510333 PMCID: PMC10379587 DOI: 10.3390/genes14071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface with motility or sensory functions. Primary cilia work as antennae to sense and transduce extracellular signals. Cilia critically control proliferation by mediating cell-extrinsic signals and by regulating cell cycle entry. Recent studies have shown that primary cilia and their associated proteins also function in autophagy and genome stability, which are important players in oncogenesis. Abnormal functions of primary cilia may contribute to oncogenesis. Indeed, defective cilia can either promote or suppress cancers, depending on the cancer-initiating mutation, and the presence or absence of primary cilia is associated with specific cancer types. Together, these findings suggest that primary cilia play important, but distinct roles in different cancer types, opening up a completely new avenue of research to understand the biology and treatment of cancers. In this review, we discuss the roles of primary cilia in promoting or inhibiting oncogenesis based on the known or predicted functions of cilia and cilia-associated proteins in several key processes and related clinical implications.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School of Advanced Studies, Genomic and Experimental medicine Program (Scuola Superiore Meridionale), 80138 Naples, Italy
| |
Collapse
|
5
|
Stevenson NL. The factory, the antenna and the scaffold: the three-way interplay between the Golgi, cilium and extracellular matrix underlying tissue function. Biol Open 2023; 12:287059. [PMID: 36802341 PMCID: PMC9986613 DOI: 10.1242/bio.059719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The growth and development of healthy tissues is dependent on the construction of a highly specialised extracellular matrix (ECM) to provide support for cell growth and migration and to determine the biomechanical properties of the tissue. These scaffolds are composed of extensively glycosylated proteins which are secreted and assembled into well-ordered structures that can hydrate, mineralise, and store growth factors as required. The proteolytic processing and glycosylation of ECM components is vital to their function. These modifications are under the control of the Golgi apparatus, an intracellular factory hosting spatially organised, protein-modifying enzymes. Regulation also requires a cellular antenna, the cilium, which integrates extracellular growth signals and mechanical cues to inform ECM production. Consequently, mutations in either Golgi or ciliary genes frequently lead to connective tissue disorders. The individual importance of each of these organelles to ECM function is well-studied. However, emerging evidence points towards a more tightly linked system of interdependence between the Golgi, cilium and ECM. This review examines how the interplay between all three compartments underpins healthy tissue. As an example, it will look at several members of the golgin family of Golgi-resident proteins whose loss is detrimental to connective tissue function. This perspective will be important for many future studies looking to dissect the cause and effect of mutations impacting tissue integrity.
Collapse
Affiliation(s)
- Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
6
|
Zheng NX, Miao YT, Zhang X, Huang MZ, Jahangir M, Luo S, Lang B. Primary cilia-associated protein IFT172 in ciliopathies. Front Cell Dev Biol 2023; 11:1074880. [PMID: 36733456 PMCID: PMC9887189 DOI: 10.3389/fcell.2023.1074880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Cilium is a highly conserved antenna-like structure protruding from the surface of the cell membrane, which is widely distributed on most mammalian cells. Two types of cilia have been described so far which include motile cilia and immotile cilia and the latter are also known as primary cilia. Dysfunctional primary cilia are commonly associated with a variety of congenital diseases called ciliopathies with multifaceted presentations such as retinopathy, congenital kidney disease, intellectual disability, cancer, polycystic kidney, obesity, Bardet Biedl syndrome (BBS), etc. Intraflagellar transport (IFT) is a bi-directional transportation process that helps maintain a balanced flow of proteins or signaling molecules essential for the communication between cilia and cytoplasm. Disrupted IFT contributes to the abnormal structure or function of cilia and frequently promotes the occurrence of ciliopathies. Intraflagellar transport 172 (IFT172) is a newly identified member of IFT proteins closely involved in some rare ciliopathies such as Mainzer-Saldino syndrome (MZSDS) and BBS, though the underpinning causal mechanisms remain largely elusive. In this review, we summarize the key findings on the genetic and protein characteristic of IFT172, as well as its function in intraflagellar transport, to provide comprehensive insights to understand IFT172-related ciliopathies.
Collapse
Affiliation(s)
- Nan-Xi Zheng
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Ting Miao
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mu-Zhi Huang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| |
Collapse
|
7
|
Li L, Chen Y, Liao W, Yu Q, Lin H, Shi Y, Zhang L, Fu G, Wang Z, Li X, Kong X, Zhou T, Qin L. Associations of IFT20 and GM130 protein expressions with clinicopathological features and survival of patients with lung adenocarcinoma. BMC Cancer 2022; 22:809. [PMID: 35869490 PMCID: PMC9308367 DOI: 10.1186/s12885-022-09905-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/15/2022] [Indexed: 12/21/2022] Open
Abstract
Background Lung cancer is the leading cause of malignancy-related mortality and lung adenocarcinoma accounts for about 40% of lung malignancies. The aim of this study was to investigate the associations of intraflagellar transport protein 20 (IFT20) and Golgi matrix protein 130 (GM130) expression with clinicopathological features and survival in patients with lung adenocarcinoma. Methods The expressions of IFT20 and GM130 protein in cancerous and matched adjacent lung tissues of 235 patients with lung adenocarcinoma were assessed by tissue microarray and immunohistochemistry, which were indicated by the mean optical density (IOD/area), the rate of positive staining cells and staining intensity score. The correlation between IFT20 and GM130 protein was assessed by Spearman’s rank correlation. Associations of IFT20 and GM130 protein expression with clinicopathological features of patients were analyzed by multivariate logistic regression models. The survival analysis of patients was performed by Cox proportional hazard regression models. Results With adjustment for multiple potential confounders, each one-point increase in IFT20 protein staining intensity score was significantly associated with 32% and 29% reduced risk for TNM stage in II ~ IV and lymphatic metastasis of patients, respectively (P < 0.05). And each one-point increase in GM130 protein staining intensity score was associated with a significant reduction in the risk of poor differentiation and tumors size > 7 cm by 29% and 38% for lung adenocarcinoma patients, respectively (P < 0.05). In stratified Cox model analysis, enhanced IFT20 staining intensity score was significantly decreased the risk of death by 16% for patients without distant metastasis. And elevated the IOD/area of GM130 expression significantly decreased the death risk of lung adenocarcinoma patients with tumor size > 7 cm or distant metastasis by 54% and 65%, respectively (P < 0.05). Conclusion IFT20 and GM130 protein expressions were negatively associated with tumor differentiated types, size, TNM stage and lymphatic metastasis of lung adenocarcinoma. Both IFT20 and GM130 proteins have some protective effects on the survival of lung adenocarcinoma patients with specific clinicopathological features. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09905-6.
Collapse
|
8
|
Finetti F, Onnis A, Baldari CT. IFT20: An Eclectic Regulator of Cellular Processes beyond Intraflagellar Transport. Int J Mol Sci 2022; 23:ijms232012147. [PMID: 36292997 PMCID: PMC9603483 DOI: 10.3390/ijms232012147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Initially discovered as the smallest component of the intraflagellar transport (IFT) system, the IFT20 protein has been found to be implicated in several unconventional mechanisms beyond its essential role in the assembly and maintenance of the primary cilium. IFT20 is now considered a key player not only in ciliogenesis but also in vesicular trafficking of membrane receptors and signaling proteins. Moreover, its ability to associate with a wide array of interacting partners in a cell-type specific manner has expanded the function of IFT20 to the regulation of intracellular degradative and secretory pathways. In this review, we will present an overview of the multifaceted role of IFT20 in both ciliated and non-ciliated cells.
Collapse
|