1
|
Sharma DK, Soni I, Rajpurohit YS. Surviving the storm: exploring the role of natural transformation in nutrition and DNA repair of stressed Deinococcus radiodurans. Appl Environ Microbiol 2025; 91:e0137124. [PMID: 39651863 PMCID: PMC11784314 DOI: 10.1128/aem.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Deinococcus radiodurans, a natural transformation (NT)-enabled bacterium renowned for its exceptional radiation resistance, employs unique DNA repair and oxidative stress mitigation mechanisms as a strategic response to DNA damage. This study excavates into the intricate roles of NT machinery in the stressed D. radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA, which are instrumental in the uptake and processing of extracellular DNA (eDNA). Our data reveal that NT not only supports the nutritional needs of D. radiodurans under stress but also has roles in DNA repair. The study findings establish that NT-specific proteins (ComEA, ComEC, and endonuclease A [EndA]) may contribute to support the nutritional requirements in unstressed and heavily DNA-damaged cells, while DprA contributes differently and in a context-dependent manner to navigating through the DNA damage storm. Thus, this dual functionality of NT-specific genes is proposed to be a contributing factor in the remarkable ability of D. radiodurans to survive and thrive in environments characterized by high levels of DNA-damaging agents.IMPORTANCEDeinococcus radiodurans is a bacterium known for its extraordinary radiation resistance. This study explores the roles of NT machinery in the radiation-resistant bacterium Deinococcus radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA. These genes are crucial for the uptake and processing of eDNA and contribute to the bacterium nutritional needs and DNA repair under stress. The findings suggest that the NT-specific proteins ComEA, ComEC, and EndA may help meet the nutritional needs of unstressed and heavily DNA-damaged cells, whereas DprA plays a distinct role that varies, depending on the context in aiding cells to cope with DNA damage. The functionality of NT genes is proposed to enhance D. radiodurans survival in environments with high levels of DNA-damaging agents.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Ishu Soni
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| |
Collapse
|
2
|
Misra HS, Rajpurohit YS. DNA damage response and cell cycle regulation in bacteria: a twist around the paradigm. Front Microbiol 2024; 15:1389074. [PMID: 38605710 PMCID: PMC11007091 DOI: 10.3389/fmicb.2024.1389074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
The co-protease activity in the RecA-ssDNA complex cleaves the autorepressor LexA, resulting in the derepression of a large number of genes under LexA control. This process is called the SOS response, and genes that are expressed in response to DNA damage are called SOS genes. The proteins encoded by the SOS genes are involved in both DNA repair and maintaining the functions of crucial cell division proteins (e.g., FtsZ) under check until the damaged DNA is presumably repaired. This mechanism of SOS response is the only known mechanism of DNA damage response and cell cycle regulation in bacteria. However, there are bacteria that do not obey this rule of DNA damage response and cell cycle regulation, yet they respond to DNA damage, repair it, and survive. That means such bacteria would have some alternate mechanism(s) of DNA damage response and cell cycle regulation beyond the canonical pathway of the SOS response. In this study, we present the perspectives that bacteria may have other mechanisms of DNA damage response and cell cycle regulation mediated by bacterial eukaryotic type Ser/Thr protein kinases as an alternate to the canonical SOS response and herewith elaborate on them with a well-studied example in the radioresistant bacterium Deinococcus radiodurans.
Collapse
Affiliation(s)
- Hari Sharan Misra
- School of Sciences, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
3
|
Sharma DK, Soni I, Misra HS, Rajpurohit YS. Natural transformation-specific DprA coordinate DNA double-strand break repair pathways in heavily irradiated D. radiodurans. Appl Environ Microbiol 2024; 90:e0194823. [PMID: 38193676 PMCID: PMC10880594 DOI: 10.1128/aem.01948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
Deinococcus radiodurans exhibits remarkable survival under extreme conditions, including ionizing radiation, desiccation, and various DNA-damaging agents. It employs unique repair mechanisms, such as single-strand annealing (SSA) and extended synthesis-dependent strand annealing (ESDSA), to efficiently restore damaged genome. In this study, we investigate the role of the natural transformation-specific protein DprA in DNA repair pathways following acute gamma radiation exposure. Our findings demonstrate that the absence of DprA leads to rapid repair of gamma radiation-induced DNA double-strand breaks primarily occur through SSA repair pathway. Additionally, our findings suggest that the DprA protein may hinder both the SSA and ESDSA repair pathways, albeit in distinct manners. Overall, our results highlight the crucial function of DprA in the selection between SSA and ESDSA pathways for DNA repair in heavily irradiated D. radiodurans.IMPORTANCEDeinococcus radiodurans exhibits an extraordinary ability to endure and thrive in extreme environments, including exposure to radiation, desiccation, and damaging chemicals, as well as intense UV radiation. The bacterium has evolved highly efficient repair mechanisms capable of rapidly mending hundreds of DNA fragments in its genome. Our research indicates that natural transformation (NT)-specific dprA genes play a pivotal role in regulating DNA repair in response to radiation. Remarkably, we found that DprA is instrumental in selecting DNA double-strand break repair pathways, a novel function that has not been reported before. This unique regulatory mechanism highlights the indispensable role of DprA beyond its native function in NT and underscores its ubiquitous presence across various bacterial species, regardless of their NT proficiency. These findings shed new light on the resilience and adaptability of Deinococcus radiodurans, opening avenues for further exploration into its exceptional survival strategies.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Ishu Soni
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
4
|
de Groot A, Blanchard L. DNA repair and oxidative stress defense systems in radiation-resistant Deinococcus murrayi. Can J Microbiol 2023; 69:416-431. [PMID: 37552890 DOI: 10.1139/cjm-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Deinococcus murrayi is a bacterium isolated from hot springs in Portugal, and named after Dr. Robert G.E. Murray in recognition of his research on the genus Deinococcus. Like other Deinococcus species, D. murrayi is extremely resistant to ionizing radiation. Repair of massive DNA damage and limitation of oxidative protein damage are two important factors contributing to the robustness of Deinococcus bacteria. Here, we identify, among others, the DNA repair and oxidative stress defense proteins in D. murrayi, and highlight special features of D. murrayi. For DNA repair, D. murrayi does not contain a standalone uracil-DNA glycosylase (Ung), but it encodes a protein in which Ung is fused to a DNA photolyase domain (PhrB). UvrB and UvrD contain large insertions corresponding to inteins. One of its endonuclease III enzymes lacks a [4Fe-4S] cluster. Deinococcus murrayi possesses a homolog of the error-prone DNA polymerase IV. Concerning oxidative stress defense, D. murrayi encodes a manganese catalase in addition to a heme catalase. Its organic hydroperoxide resistance protein Ohr is atypical because the redox active cysteines are present in a CXXC motif. These and other characteristics of D. murrayi show further diversity among Deinococcus bacteria with respect to resistance-associated mechanisms.
Collapse
Affiliation(s)
- Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13115, France
| | - Laurence Blanchard
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13115, France
| |
Collapse
|
5
|
The radioresistant and survival mechanisms of Deinococcus radiodurans. RADIATION MEDICINE AND PROTECTION 2023. [DOI: 10.1016/j.radmp.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
6
|
Characterization of DNA Processing Protein A (DprA) of the Radiation-Resistant Bacterium Deinococcus radiodurans. Microbiol Spectr 2022; 10:e0347022. [PMID: 36453941 PMCID: PMC9769556 DOI: 10.1128/spectrum.03470-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Environmental DNA uptake by certain bacteria and its integration into their genome create genetic diversity and new phenotypes. DNA processing protein A (DprA) is part of a multiprotein complex and facilitates the natural transformation (NT) phenotype in most bacteria. Deinococcus radiodurans, an extremely radioresistant bacterium, is efficient in NT, and its genome encodes nearly all of the components of the natural competence complex. Here, we have characterized the DprA protein of this bacterium (DrDprA) for the known characteristics of DprA proteins of other bacteria and the mechanisms underlying the DNA-RecA interaction. DrDprA has three domains. In vitro studies showed that purified recombinant DrDprA binds to both single-strand DNA (ssDNA) and double-strand DNA (dsDNA) and is able to protect ssDNA from nucleolytic degradation. DrDprA showed a strong interaction with DrRecA and facilitated RecA-catalyzed functions in vivo. Mutational studies identified DrDprA amino acid residues crucial for oligomerization, the interaction with DrRecA, and DNA binding. Furthermore, we showed that both oligomerization and DNA binding properties of DrDprA are integral to its support of the DrRecA-catalyzed strand exchange reaction (SER) in vitro. Together, these data suggested that DrDprA is largely structurally conserved with other DprA homologs but shows some unique structure-function features like the existence of an additional C-terminal Drosophila melanogaster Miasto-like protein 1 (DML1) domain, equal affinities for ssDNA and dsDNA, and the collective roles of oligomerization and DNA binding properties in supporting DrRecA functions. IMPORTANCE Bacteria can take up extracellular DNA (eDNA) by natural transformation (NT). Many bacteria, including Deinococcus radiodurans, have constitutive competence systems and can take up eDNA throughout their growth phase. DprA (DNA processing protein A) is a transformation-specific recombination mediator protein (RMP) that plays a role in bacterial NT, and the absence of this gene significantly reduces the transformation efficiencies of both chromosomal and plasmid DNA. NT helps bacteria survive under adverse conditions and contributes to genetic diversity in bacteria. The present work describes the characterization of DprA from D. radiodurans and will add to the existing knowledge of DprA biology.
Collapse
|
7
|
Del Val E, Nasser W, Abaibou H, Reverchon S. Design and comparative characterization of RecA variants. Sci Rep 2021; 11:21106. [PMID: 34702889 PMCID: PMC8548320 DOI: 10.1038/s41598-021-00589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
RecA plays a central role in DNA repair and is a main actor involved in recombination and activation of the SOS response. It is also used in the context of biotechnological applications in recombinase polymerase isothermal amplification (RPA). In this work, we studied the biological properties of seven RecA variants, in particular their recombinogenic activity and their ability to induce the SOS response, to better understand the structure-function relationship of RecA and the effect of combined mutations. We also investigated the biochemical properties of RecA variants that may be useful for the development of biotechnological applications. We showed that Dickeya dadantii RecA (DdRecA) had an optimum strand exchange activity at 30 °C and in the presence of a dNTP mixture that inhibited Escherichia coli RecA (EcRecA). The differences between the CTD and C-tail of the EcRecA and DdRecA domains could explain the altered behaviour of DdRecA. D. radiodurans RecA (DrRecA) was unable to perform recombination and activation of the SOS response in an E. coli context, probably due to its inability to interact with E. coli recombination accessory proteins and SOS LexA repressor. DrRecA strand exchange activity was totally inhibited in the presence of chloride ions but worked well in acetate buffer. The overproduction of Pseudomonas aeruginosa RecA (PaRecA) in an E. coli context was responsible for a higher SOS response and defects in cellular growth. PaRecA was less inhibited by the dNTP mixture than EcRecA. Finally, the study of three variants, namely, EcPa, EcRecAV1 and EcRecAV2, that contained a combination of mutations that, taken independently, are described as improving recombination, led us to raise new hypotheses on the structure-function relationship and on the monomer-monomer interactions that perturb the activity of the protein as a whole.
Collapse
Affiliation(s)
- Elsa Del Val
- UMR5240, Microbiologie, Adaptation et Pathogénie, University of Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, 11 Avenue Jean Capelle, 69621, Villeurbanne, France
- Molecular Innovation Unit, Centre Christophe Mérieux, bioMérieux, 5 Rue des Berges, 38024, Grenoble Cedex 01, France
| | - William Nasser
- UMR5240, Microbiologie, Adaptation et Pathogénie, University of Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, 11 Avenue Jean Capelle, 69621, Villeurbanne, France
| | - Hafid Abaibou
- Molecular Innovation Unit, Centre Christophe Mérieux, bioMérieux, 5 Rue des Berges, 38024, Grenoble Cedex 01, France.
| | - Sylvie Reverchon
- UMR5240, Microbiologie, Adaptation et Pathogénie, University of Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, 11 Avenue Jean Capelle, 69621, Villeurbanne, France.
| |
Collapse
|
8
|
Rajpurohit YS, Sharma DK, Misra HS. Involvement of Serine / Threonine protein kinases in DNA damage response and cell division in bacteria. Res Microbiol 2021; 173:103883. [PMID: 34624492 DOI: 10.1016/j.resmic.2021.103883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
The roles of Serine/Threonine protein kinases (STPKs) in bacterial physiology, including bacterial responses to nutritional stresses and under pathogenesis have been well documented. STPKs roles in bacterial cell cycle regulation and DNA damage response have not been much emphasized, possibly because the LexA/RecA type SOS response became the synonym to DNA damage response and cell cycle regulation in bacteria. This review summarizes current knowledge of STPKs genetics, domain organization, and their roles in DNA damage response and cell division regulation in bacteria.
Collapse
Affiliation(s)
- Yogendra S Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India
| |
Collapse
|