1
|
Li Z, Qin L, Xu X, Chen R, Zhang G, Wang B, Li B, Chu XM. Immune modulation: the key to combat SARS-CoV-2 induced myocardial injury. Front Immunol 2025; 16:1561946. [PMID: 40438117 PMCID: PMC12116346 DOI: 10.3389/fimmu.2025.1561946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the Coronavirus disease 2019 (COVID-19) pandemic, has posed significant healthcare challenges. In addition to respiratory complications, it has led to severe damage in other organs, particularly the cardiovascular system. Of which, myocardial injury is increasingly recognized as a most significant complication, contributing to the high mortality. Recent research indicates the pivotal role of immune dysregulation in mediating myocardial injury in patients infected with SARS-CoV-2. In this review, we provide a comprehensive analysis of the immune mechanisms involved in SARS-CoV-2-induced myocardial damage, focusing on the roles of key immune cells and molecules that contribute to this pathological process. Aiming at mitigating the myocardial injury of COVID-19, we review immune-based treatments under evaluation in preclinical and clinical trials. Along with talking about the similarities and differences in myocardial injury resulting from SARS-CoV-2, the Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus (SARS-CoV). This article provides a unique perspective on using past experiences to prevent myocardial injury in the face of ongoing virus mutations.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Luning Qin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Banghui Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Hu Z, Wang W, Lin Y, Guo H, Chen Y, Wang J, Yu F, Rao L, Fan Z. Extracellular Vesicle-Inspired Therapeutic Strategies for the COVID-19. Adv Healthc Mater 2024; 13:e2402103. [PMID: 38923772 DOI: 10.1002/adhm.202402103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Emerging infectious diseases like coronavirus pneumonia (COVID-19) present significant challenges to global health, extensively affecting both human society and the economy. Extracellular vesicles (EVs) have demonstrated remarkable potential as crucial biomedical tools for COVID-19 diagnosis and treatment. However, due to limitations in the performance and titer of natural vesicles, their clinical use remains limited. Nonetheless, EV-inspired strategies are gaining increasing attention. Notably, biomimetic vesicles, inspired by EVs, possess specific receptors that can act as "Trojan horses," preventing the virus from infecting host cells. Genetic engineering can enhance these vesicles by enabling them to carry more receptors, significantly increasing their specificity for absorbing the novel coronavirus. Additionally, biomimetic vesicles inherit numerous cytokine receptors from parent cells, allowing them to effectively mitigate the "cytokine storm" by adsorbing pro-inflammatory cytokines. Overall, this EV-inspired strategy offers new avenues for the treatment of emerging infectious diseases. Herein, this review systematically summarizes the current applications of EV-inspired strategies in the diagnosis and treatment of COVID-19. The current status and challenges associated with the clinical implementation of EV-inspired strategies are also discussed. The goal of this review is to provide new insights into the design of EV-inspired strategies and expand their application in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Ziwei Hu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Wei Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Lin
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Hui Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Yiwen Chen
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Junjie Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Feng Yu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, P. R. China
| |
Collapse
|
3
|
Chang H, Chen E, Hu Y, Wu L, Deng L, Ye‐Lehmann S, Mao X, Zhu T, Liu J, Chen C. Extracellular Vesicles: The Invisible Heroes and Villains of COVID-19 Central Neuropathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305554. [PMID: 38143270 PMCID: PMC10933635 DOI: 10.1002/advs.202305554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/18/2023] [Indexed: 12/26/2023]
Abstract
Acknowledging the neurological symptoms of COVID-19 and the long-lasting neurological damage even after the epidemic ends are common, necessitating ongoing vigilance. Initial investigations suggest that extracellular vesicles (EVs), which assist in the evasion of the host's immune response and achieve immune evasion in SARS-CoV-2 systemic spreading, contribute to the virus's attack on the central nervous system (CNS). The pro-inflammatory, pro-coagulant, and immunomodulatory properties of EVs contents may directly drive neuroinflammation and cerebral thrombosis in COVID-19. Additionally, EVs have attracted attention as potential candidates for targeted therapy in COVID-19 due to their innate homing properties, low immunogenicity, and ability to cross the blood-brain barrier (BBB) freely. Mesenchymal stromal/stem cell (MSCs) secreted EVs are widely applied and evaluated in patients with COVID-19 for their therapeutic effect, considering the limited antiviral treatment. This review summarizes the involvement of EVs in COVID-19 neuropathology as carriers of SARS-CoV-2 or other pathogenic contents, as predictors of COVID-19 neuropathology by transporting brain-derived substances, and as therapeutic agents by delivering biotherapeutic substances or drugs. Understanding the diverse roles of EVs in the neuropathological aspects of COVID-19 provides a comprehensive framework for developing, treating, and preventing central neuropathology and the severe consequences associated with the disease.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Erya Chen
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yi Hu
- Department of Cardiology, Honghui hospitalXi'an Jiaotong UniversityXi'an710049China
| | - Lining Wu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Liyun Deng
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Shixin Ye‐Lehmann
- Diseases and Hormones of the Nervous System University of Paris‐Scalay Bicêtre Hosptial BâtGrégory Pincus 80 Rue du Gal Leclerc, CedexLe Kremlin Bicêtre94276France
| | - Xiaobo Mao
- Department of NeurologyInstitute of Cell EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMD21218USA
| | - Tao Zhu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jin Liu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Chan Chen
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
4
|
Liao TL, Liu HJ, Chen DY, Tang KT, Chen YM, Liu PY. SARS-CoV-2 primed platelets-derived microRNAs enhance NETs formation by extracellular vesicle transmission and TLR7/8 activation. Cell Commun Signal 2023; 21:304. [PMID: 37904132 PMCID: PMC10614402 DOI: 10.1186/s12964-023-01345-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Hyperactive neutrophil extracellular traps (NETs) formation plays a key role in the pathogenesis of severe COVID-19. Extracellular vesicles (EVs) are vehicles which carry cellular components for intercellular communication. The association between COVID-19 patients-derived EVs and NETs formation remains elusive. METHODS We explored the roles of EVs in NETs formation from 40 COVID-19 patients with different disease severities as well as 30 healthy subjects. The EVs-carried microRNAs profile was analyzed using next generation sequencing approach which was validated by quantitative reverse transcription PCR. The regulatory mechanism of EVs on NETs formation was investigated by using an in vitro cell-based assay, including immunofluorescence assay, flow cytometry, and immunoblotting. RESULTS COVID-19 patient-derived EVs induced NETs formation by endocytosis uptake. SARS-CoV-2 spike protein-triggered NETs formation was significantly enhanced in the presence of platelet-derived EVs (pEVs) and this effect was Toll-like receptor (TLR) 7/8- and NADPH oxidase-dependent. Increased levels of miR-21/let-7b were revealed in EVs from COVID-19 patients and were associated with disease severity. We demonstrated that the spike protein activated platelets directly, followed by the subsequent intracellular miR-21/let-7b upregulation and then were loaded into pEVs. The pEVs-carried miR-21 interacted with TLR7/8 to prime p47phox phosphorylation in neutrophils, resulting in NADPH oxidase activation to promote ROS production and NETs enhancement. In addition, miR-21 modulates NF-κB activation and IL-1β/TNFα/IL-8 upregulation in neutrophils upon TLR7/8 engagement. The miR-21 inhibitor and TLR8 antagonist could suppress efficiently spike protein-induced NETs formation and pEVs primed NETs enhancement. CONCLUSIONS We identified SARS-CoV-2 triggered platelets-derived GU-enriched miRNAs (e.g., miR-21/let-7b) as a TLR7/8 ligand that could activate neutrophils through EVs transmission. The miR-21-TLR8 axis could be used as a potential predisposing factor or therapeutic target for severe COVID-19.
Collapse
Affiliation(s)
- Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung City, 407, Taiwan.
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Hung-Jen Liu
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, 402, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, 404, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, Taichung, 404, Taiwan
- College of Medicine, China Medical University, Taichung, 404, Taiwan
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung City, 407, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, 402, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Po-Yu Liu
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung City, 407, Taiwan.
| |
Collapse
|
5
|
El-Maradny YA, Rubio-Casillas A, Uversky VN, Redwan EM. Intrinsic factors behind long-COVID: I. Prevalence of the extracellular vesicles. J Cell Biochem 2023; 124:656-673. [PMID: 37126363 DOI: 10.1002/jcb.30415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
It can be argued that the severity of COVID-19 has decreased in many countries. This could be a result of the broad coverage of the population by vaccination campaigns, which often reached an almost compulsory status in many places. Furthermore, significant roles were played by the multiple mutations in the body of the virus, which led to the emergence of several new SARS-CoV-2 variants with enhanced infectivity but dramatically reduced pathogenicity. However, the challenges associated with the development of various side effects and their persistence for long periods exceeding 20 months as a result of the SARS-CoV-2 infection, or taking available vaccines against it, are spreading horizontally and vertically in number and repercussions. For example, the World Health Organization announced that there are more than 17 million registered cases of long-COVID (also known as post-COVID syndrome) in the European Union countries alone. Furthermore, by using the PubMed search engine, one can find that more than 10 000 articles have been published focusing exclusively on long-COVID. In light of these enormous and ever-increasing numbers of cases and published articles, most of which are descriptive of the various long-COVID symptoms, the need to know the reasons behind this phenomenon raises several important questions. Is long-COVID caused by the continued presence of the virus or one/several of its components in the recovering individual body for long periods of time, which urges the body to respond in a way that leads to long-COVID development? Or are there some latent and limited reasons related to the recovering patients themselves? Or is it a sum of both? Many observations support a positive answer to the first question, whereas others back the second question but typically without releasing a fundamental reason/signal behind it. Whatever the answer is, it seems that the real reasons behind this widespread phenomenon remain unclear. This report opens a series of articles, in which we will try to shed light on the underlying causes that could be behind the long-COVID phenomenon.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán, Jalisco, Mexico
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Ondruššek R, Kvokačková B, Kryštofová K, Brychtová S, Souček K, Bouchal J. Prognostic value and multifaceted roles of tetraspanin CD9 in cancer. Front Oncol 2023; 13:1140738. [PMID: 37007105 PMCID: PMC10063841 DOI: 10.3389/fonc.2023.1140738] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
CD9 is a crucial regulator of cell adhesion in the immune system and plays important physiological roles in hematopoiesis, blood coagulation or viral and bacterial infections. It is involved in the transendothelial migration of leukocytes which might also be hijacked by cancer cells during their invasion and metastasis. CD9 is found at the cell surface and the membrane of exosomes affecting cancer progression and therapy resistance. High expression of CD9 is mostly associated with good patients outcome, with a few exceptions. Discordant findings have been reported for breast, ovarian, melanoma, pancreatic and esophageal cancer, which might be related to using different antibodies or inherent cancer heterogeneity. According to in vitro and in vivo studies, tetraspanin CD9 is not clearly associated with either tumor suppression or promotion. Further mechanistic experiments will elucidate the role of CD9 in particular cancer types and specific conditions.
Collapse
Affiliation(s)
- Róbert Ondruššek
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Department of Pathology, EUC Laboratore CGB a.s., Ostrava, Czechia
| | - Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Karolína Kryštofová
- Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Světlana Brychtová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, Olomouc, Czechia
- *Correspondence: Jan Bouchal,
| |
Collapse
|
7
|
Zhu Y, Wang S, Chen X. Extracellular Vesicles and Ischemic Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:57-68. [PMID: 37603272 DOI: 10.1007/978-981-99-1443-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Characterized by coronary artery obstruction or stenosis, ischemic cardiovascular diseases as advanced stages of coronary heart diseases commonly lead to left ventricular aneurysm, ventricular septal defect, and mitral insufficiency. Extracellular vesicles (EVs) secreted by diverse cells in the body exert roles in cell-cell interactions and intrinsic cellular regulations. With a lipid double-layer membrane and biological components such as DNA, protein, mRNA, microRNAs (miRNA), and siRNA inside, the EVs function as paracrine signaling for the pathophysiology of ischemic cardiovascular diseases and maintenance of the cardiac homeostasis. Unlike stem cell transplantation with the potential tumorigenicity and immunogenicity, the EV-based therapeutic strategy is proposed to satisfy the demand for cardiac repair and regeneration while the circulating EVs detected by a noninvasive approach can act as precious biomarkers. In this chapter, we extensively summarize the cardioprotective functions of native EVs and bioengineered EVs released from stem cells, cardiomyocytes, cardiac progenitor cells (CPCs), endothelial cells, fibroblast, smooth muscle cells, and immune cells. In addition, the potential of EVs as robust molecule biomarkers is discussed for clinical diagnosis of ischemic cardiovascular disease, attributed to the same pathology of EVs as that of their origin. Finally, we highlight EV-based therapy as a biocompatible alternative to direct cell-based therapy for ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xuerui Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
8
|
Chen X, Li H, Song H, Wang J, Zhang X, Han P, Wang X. Meet changes with constancy: Defence, antagonism, recovery, and immunity roles of extracellular vesicles in confronting SARS-CoV-2. J Extracell Vesicles 2022; 11:e12288. [PMID: 36450704 PMCID: PMC9712136 DOI: 10.1002/jev2.12288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has wrought havoc on the world economy and people's daily lives. The inability to comprehensively control COVID-19 is due to the difficulty of early and timely diagnosis, the lack of effective therapeutic drugs, and the limited effectiveness of vaccines. The body contains billions of extracellular vesicles (EVs), which have shown remarkable potential in disease diagnosis, drug development, and vaccine carriers. Recently, increasing evidence has indicated that EVs may participate or assist the body in defence, antagonism, recovery and acquired immunity against SARS-CoV-2. On the one hand, intercepting and decrypting the general intelligence carried in circulating EVs from COVID-19 patients will provide an important hint for diagnosis and treatment; on the other hand, engineered EVs modified by gene editing in the laboratory will amplify the effectiveness of inhibiting infection, replication and destruction of ever-mutating SARS-CoV-2, facilitating tissue repair and making a better vaccine. To comprehensively understand the interaction between EVs and SARS-CoV-2, providing new insights to overcome some difficulties in the diagnosis, prevention and treatment of COVID-19, we conducted a rounded review in this area. We also explain numerous critical challenges that these tactics face before they enter the clinic, and this work will provide previous 'meet change with constancy' lessons for responding to future similar public health disasters. Extracellular vesicles (EVs) provide a 'meet changes with constancy' strategy to combat SARS-CoV-2 that spans defence, antagonism, recovery, and acquired immunity. Targets for COVID-19 diagnosis, therapy, and prevention of progression may be found by capture of the message decoding in circulating EVs. Engineered and biomimetic EVs can boost effects of the natural EVs, especially anti-SARS-CoV-2, targeted repair of damaged tissue, and improvement of vaccine efficacy.
Collapse
Affiliation(s)
- Xiaohang Chen
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Huifei Li
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Haoyue Song
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jie Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- School of MedicineZhongda Hospital, Southeast UniversityNanjingChina
| | - Xing Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| |
Collapse
|
9
|
Nazimek K, Bryniarski K. Increasing the Therapeutic Efficacy of Extracellular Vesicles From the Antigen-Specific Antibody and Light Chain Perspective. Front Cell Dev Biol 2021; 9:790722. [PMID: 34901032 PMCID: PMC8652241 DOI: 10.3389/fcell.2021.790722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Due to their exceptional properties, extracellular vesicles (EVs) receive special attention as next generation biotherapeutics and vehicles for drug delivery. However, despite having many advantages over cell-based therapies, EVs usually exert lower therapeutic efficacy. This results from a number of hurdles that are faced by the EV-based approaches. Administered EVs could be rapidly cleared by the mononuclear phagocytes as well as can randomly distribute within various tissues, making tissue penetration and cell targeting insufficient. However, recent research findings imply that these limitations could be overcome with the use of antigen-specific antibodies and light chains. Major histocompatibility complex (MHC) class II-expressing EVs have been shown to form aggregates after co-incubation with antigen-specific antibodies, which greatly enhanced their biological efficacy. On the other hand, EVs could be coated with antibody light chains of chosen specificity to direct them towards desired target cell population. Both findings open up a promising perspective to achieve the highest efficacy of the EV-based approaches. Herein we discuss the opportunities for enhancing extracellular vesicle’s biological activity by using specific antibodies and light chains in the context of the challenges faced by such therapeutic approach.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
10
|
Kongsomros S, Suksatu A, Kanjanasirirat P, Manopwisedjaroen S, Prasongtanakij S, Jearawuttanakul K, Borwornpinyo S, Hongeng S, Thitithanyanont A, Chutipongtanate S. Anti-SARS-CoV-2 Activity of Extracellular Vesicle Inhibitors: Screening, Validation, and Combination with Remdesivir. Biomedicines 2021; 9:biomedicines9091230. [PMID: 34572416 PMCID: PMC8465755 DOI: 10.3390/biomedicines9091230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic severely impacts health, economy, and society worldwide. Antiviral drugs against SARS-CoV-2 are urgently needed to cope with this global crisis. It has been found that the biogenesis and release mechanisms of viruses share a common pathway with extracellular vesicles (EVs). We hypothesized that small molecule inhibitors of EV biogenesis/release could exert an anti-SARS-CoV-2 effect. Here, we screened 17 existing EV inhibitors and found that calpeptin, a cysteine proteinase inhibitor, exhibited the most potent anti-SARS-CoV-2 activity with no apparent cytotoxicity. Calpeptin demonstrated the dose-dependent inhibition against SARS-CoV-2 viral nucleoprotein expression in the infected cells with a half-maximal inhibitory concentration (IC50) of 1.44 µM in Vero-E6 and 26.92 µM in Calu-3 cells, respectively. Moreover, calpeptin inhibited the production of infectious virions with the lower IC50 of 0.6 µM in Vero E6 cells and 10.12 µM in Calu-3 cells. Interestingly, a combination of calpeptin and remdesivir, the FDA-approved antiviral drug against SARS-CoV-2 viral replication, significantly enhanced the anti-SARS-CoV-2 effects compared to monotherapy. This study discovered calpeptin as a promising candidate for anti-SARS-CoV-2 drug development. Further preclinical and clinical studies are warranted to elucidate the therapeutic efficacy of calpeptin and remdesivir combination in COVID-19.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.H.)
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.S.); (S.M.)
| | - Ampa Suksatu
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.S.); (S.M.)
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.K.); (K.J.); (S.B.)
| | - Suwimon Manopwisedjaroen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.S.); (S.M.)
| | - Somsak Prasongtanakij
- Office of Research, Academic Affairs and Innovation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Kedchin Jearawuttanakul
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.K.); (K.J.); (S.B.)
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.K.); (K.J.); (S.B.)
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.H.)
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.K.); (K.J.); (S.B.)
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.S.); (S.M.)
- Correspondence: (A.T.); (S.C.)
| | - Somchai Chutipongtanate
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.H.)
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli 10540, Thailand
- Correspondence: (A.T.); (S.C.)
| |
Collapse
|
11
|
Markarian NM, Abrahamyan L. AMDV Vaccine: Challenges and Perspectives. Viruses 2021; 13:v13091833. [PMID: 34578415 PMCID: PMC8472842 DOI: 10.3390/v13091833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Aleutian mink disease virus (AMDV) is known to cause the most significant disease in the mink industry. It is globally widespread and manifested as a deadly plasmacytosis and hyperglobulinemia. So far, measures to control the viral spread have been limited to manual serological testing for AMDV-positive mink. Further, due to the persistent nature of this virus, attempts to eradicate Aleutian disease (AD) have largely failed. Therefore, effective strategies to control the viral spread are of crucial importance for wildlife protection. One potentially key tool in the fight against this disease is by the immunization of mink against AMDV. Throughout many years, several researchers have tried to develop AMDV vaccines and demonstrated varying degrees of protection in mink by those vaccines. Despite these attempts, there are currently no vaccines available against AMDV, allowing the continuation of the spread of Aleutian disease. Herein, we summarize previous AMDV immunization attempts in mink as well as other preventative measures with the purpose to shed light on future studies designing such a potentially crucial preventative tool against Aleutian disease.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases of Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Correspondence:
| |
Collapse
|
12
|
Zaki MM, Lesha E, Said K, Kiaee K, Robinson-McCarthy L, George H, Hanna A, Appleton E, Liu S, Ng AHM, Khoshakhlagh P, Church GM. Cell therapy strategies for COVID-19: Current approaches and potential applications. SCIENCE ADVANCES 2021; 7:eabg5995. [PMID: 34380619 PMCID: PMC8357240 DOI: 10.1126/sciadv.abg5995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to burden society worldwide. Despite most patients having a mild course, severe presentations have limited treatment options. COVID-19 manifestations extend beyond the lungs and may affect the cardiovascular, nervous, and other organ systems. Current treatments are nonspecific and do not address potential long-term consequences such as pulmonary fibrosis, demyelination, and ischemic organ damage. Cell therapies offer great potential in treating severe COVID-19 presentations due to their customizability and regenerative function. This review summarizes COVID-19 pathogenesis, respective areas where cell therapies have potential, and the ongoing 89 cell therapy trials in COVID-19 as of 1 January 2021.
Collapse
Affiliation(s)
- Mark M Zaki
- GC Therapeutics Inc., Cambridge, MA 02139, USA
- Department of Neurosurgery, University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Emal Lesha
- GC Therapeutics Inc., Cambridge, MA 02139, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khaled Said
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiavash Kiaee
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Angy Hanna
- Department of Medicine, Beaumont Hospital, Royal Oak, MI, USA
| | - Evan Appleton
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Alex H M Ng
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Parastoo Khoshakhlagh
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - George M Church
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| |
Collapse
|
13
|
Singh B, Mal G, Verma V, Tiwari R, Khan MI, Mohapatra RK, Mitra S, Alyami SA, Emran TB, Dhama K, Moni MA. Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res Ther 2021; 12:283. [PMID: 33980321 PMCID: PMC8114669 DOI: 10.1186/s13287-021-02334-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. MAIN BODY Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. CONCLUSIONS The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|