1
|
Nazari S, Poustforoosh A, Paul PR, Kukreti R, Tavakkoli M, Saso L, Firuzi O, Moosavi F. c-MET tyrosine kinase inhibitors reverse drug resistance mediated by the ATP-binding cassette transporter B1 (ABCB1) in cancer cells. 3 Biotech 2025; 15:2. [PMID: 39650809 PMCID: PMC11618280 DOI: 10.1007/s13205-024-04162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/10/2024] [Indexed: 12/11/2024] Open
Abstract
This study investigated the potential of MET kinase inhibitors, cabozantinib, crizotinib, and PHA665752, in reversing multidrug resistance (MDR) mediated by ABCB1 in cancer cells. The accumulation of the fluorescent probe, Rhodamine 123, was assessed using flow cytometry and fluorescence microscopy in MDR MES-SA/DX5 and parental cells. The growth inhibitory activity of MET inhibitors as monotherapies and in combination with chemotherapeutic drugs was evaluated by MTT assay. CalcuSyn software was used to analyze the combination index (CI) as an index of drug-drug interaction in combination treatments. Results showed that at concentrations of 5, and 25 μM, c-MET inhibitors significantly increased Rhodamine 123 accumulation in MDR cells, with ratios up to 17.8 compared to control cells, while exhibiting no effect in parental cells. Additionally, the combination of c-MET inhibitors with the chemotherapeutic agent doxorubicin synergistically enhanced cytotoxicity in MDR cells, as evidenced by combination index (CI) values of 0.54 ± 0.08, 0.69 ± 0.1, and 0.85 ± 0.07 for cabozantinib, crizotinib, and PHA665752, respectively. While all three c-MET inhibitors stimulated ABCB1 ATPase activity in different manners at certain concentrations, PHA-665752 suppressed it at high concentration. In silico analysis also suggested that the transmembrane domains (TMD) of ABCB1 transporters could be considered potential target for these agents. Our results suggest that c-MET inhibitors can serve as promising MDR reversal agents in ABCB1-medicated drug-resistant cancer cells.
Collapse
Affiliation(s)
- Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Lin BH, Li YC, Murakami M, Wu YS, Huang YH, Hung TH, Ambudkar SV, Wu CP. Epertinib counteracts multidrug resistance in cancer cells by antagonizing the drug efflux function of ABCB1 and ABCG2. Biomed Pharmacother 2024; 180:117542. [PMID: 39388999 DOI: 10.1016/j.biopha.2024.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
A significant hurdle in cancer treatment arises from multidrug resistance (MDR), often due to overexpression of ATP-binding cassette (ABC) transporters like ABCB1 and/or ABCG2 in cancer cells. These transporters actively diminish the efficacy of cytotoxic drugs by facilitating ATP hydrolysis-dependent drug efflux and reducing intracellular drug accumulation in cancer cells. Addressing multidrug-resistant cancers poses a significant challenge due to the lack of approved treatments, prompting the exploration of alternative avenues like drug repurposing (also referred to as drug repositioning) of molecularly targeted agents to reverse MDR-mediated by ABCB1 and/or ABCG2 in multidrug-resistant cancer cells. Epertinib, a potent inhibitor of EGFR and HER2 currently in clinical trials for solid tumors, was investigated for its potential to resensitize ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic agents. Our findings reveal that at sub-toxic, submicromolar concentrations, epertinib restores the sensitivity of multidrug-resistant cancer cells to cytotoxic drugs in a concentration-dependent manner. The results demonstrate that epertinib enhances drug-induced apoptosis in these cancer cells by impeding the drug-efflux function of ABCB1 and ABCG2 without altering their expression. ATPase activity and molecular docking were employed to reveal potential interaction sites between epertinib and the drug-binding pockets of ABCB1 and ABCG2. In summary, our study demonstrates an additional pharmacological capability of epertinib against the activity of ABCB1 and ABCG2. These findings suggest that incorporating epertinib into combination therapy could be advantageous for a specific patient subset with tumors exhibiting high levels of ABCB1 or ABCG2, warranting further exploration.
Collapse
Affiliation(s)
- Bing-Huan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
3
|
Drabison T, Boeckman M, Yang Y, Huang KM, de Bruijn P, Nepal MR, Silvaroli JA, Chowdhury AT, Eisenmann ED, Cheng X, Pabla N, Mathijssen RH, Baker SD, Hu S, Sparreboom A, Talebi Z. Systematic Evaluation of Tyrosine Kinase Inhibitors as OATP1B1 Substrates Using a Competitive Counterflow Screen. CANCER RESEARCH COMMUNICATIONS 2024; 4:2489-2497. [PMID: 39207193 PMCID: PMC11417675 DOI: 10.1158/2767-9764.crc-24-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Although the primary elimination pathway for most tyrosine kinase inhibitors (TKI) involves CYP3A4-mediated metabolism, the mechanism by which these agents are brought into hepatocytes remains unclear. In this study, we optimized and validated a competitive counterflow (CCF) assay to examine TKIs as substrates of the hepatic uptake transporter OATP1B1. The CCF method was based on the stimulated efflux of radiolabeled estradiol-17β-glucuronide under steady-state conditions in HEK293 cells engineered to overexpress OATP1B1. Of the 62 approved TKIs examined, 13 agents were identified as putative substrates of OATP1B1, and pazopanib was selected as a representative hit for further validation studies. The transport of pazopanib by OATP1B1 was confirmed by decreased activity of its target VEGFR2 in OATP1B1-overexpressing cells, but not cells lacking OATP1B1, consistent with molecular docking analyses indicating an overlapping binding orientation on OATP1B1 with the known substrate estrone-3-sulfate. In addition, the liver-to-plasma ratio of pazopanib in vivo was decreased in mice with a deficiency of the orthologous transporters, and this was accompanied by diminished pazopanib-induced hepatotoxicity, as determined by changes in the levels of liver transaminases. Our study supports the utility of CCF assays to assess substrate affinity for OATP1B1 within a large set of agents in the class of TKIs and sheds light on the mechanism by which these agents are taken up into hepatocytes in advance of metabolism. SIGNIFICANCE Despite the established exposure-pharmacodynamic relationships for many TKIs, the mechanisms underlying the agents' unpredictable pharmacokinetic profiles remain poorly understood. We report here that the disposition of many TKIs depends on hepatic transport by OATP1B1, a process that has toxicologic ramifications for agents that are associated with hepatotoxicity.
Collapse
Affiliation(s)
- Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Mike Boeckman
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Yan Yang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio.
| | - Kevin M. Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Mahesh R. Nepal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Josie A. Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Anika T. Chowdhury
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio.
| | - Navjotsingh Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Ron H.J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
4
|
Teng QX, Lei ZN, Wang JQ, Yang Y, Wu ZX, Acharekar ND, Zhang W, Yoganathan S, Pan Y, Wurpel J, Chen ZS, Fang S. Overexpression of ABCC1 and ABCG2 confers resistance to talazoparib, a poly (ADP-Ribose) polymerase inhibitor. Drug Resist Updat 2024; 73:101028. [PMID: 38340425 DOI: 10.1016/j.drup.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 02/12/2024]
Abstract
AIMS The overexpression of ABC transporters on cancer cell membranes is one of the most common causes of multidrug resistance (MDR). This study investigates the impact of ABCC1 and ABCG2 on the resistance to talazoparib (BMN-673), a potent poly (ADP-ribose) polymerase (PARP) inhibitor, in ovarian cancer treatment. METHODS The cell viability test was used to indicate the effect of talazoparib in different cell lines. Computational molecular docking analysis was conducted to simulate the interaction between talazoparib and ABCC1 or ABCG2. The mechanism of talazoparib resistance was investigated by constructing talazoparib-resistant subline A2780/T4 from A2780 through drug selection with gradually increasing talazoparib concentration. RESULTS Talazoparib cytotoxicity decreased in drug-selected or gene-transfected cell lines overexpressing ABCC1 or ABCG2 but can be restored by ABCC1 or ABCG2 inhibitors. Talazoparib competitively inhibited substrate drug efflux activity of ABCC1 or ABCG2. Upregulated ABCC1 and ABCG2 protein expression on the plasma membrane of A2780/T4 cells enhances resistance to other substrate drugs, which could be overcome by the knockout of either gene. In vivo experiments confirmed the retention of drug-resistant characteristics in tumor xenograft mouse models. CONCLUSIONS The therapeutic efficacy of talazoparib in cancer may be compromised by its susceptibility to MDR, which is attributed to its interactions with the ABCC1 or ABCG2 transporters. The overexpression of these transporters can potentially diminish the therapeutic impact of talazoparib in cancer treatment.
Collapse
Affiliation(s)
- Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Nikita Dilip Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Wei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261041, PR China
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yihang Pan
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China
| | - John Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China.
| |
Collapse
|
5
|
Wang L, Lyu C, Stadlbauer B, Buchner A, Nößner E, Pohla H. Berbamine targets cancer stem cells and reverses cabazitaxel resistance via inhibiting IGF2BP1 and p-STAT3 in prostate cancer. Prostate 2024; 84:131-147. [PMID: 37828768 DOI: 10.1002/pros.24632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are a small subpopulation of tumor cells with the capability of self-renewal and drug resistance, leading to tumor progression and disease relapse. Our study aimed to investigate the antitumor effect of berbamine, extracted from berberis amurensis, on prostate CSCs. METHODS Sphere formation was used to collect prostate CSCs. The viability, proliferation, invasion, migration, and apoptosis assays were used to evaluate the antitumor effect of berbamine on prostate CSCs. Prostate CSC markers were analyzed by flow cytometry and qRT-PCR. Small RNA sequencing analysis was conducted to analyse miRNAs. Exosomes were extracted using the ExoQuick-TC kit and verified by testing exosomal markers using western blot. RESULTS Berbamine targets prostate CSCs. Additionally, berbamine enhanced the antitumor effect of cabazitaxel, a second-line chemotherapeutic drug for advanced prostate cancer, and re-sensitized Cabazitaxel-resistant PCa cells (CabaR-DU145) to cabazitaxel by inhibiting ABCG2, CXCR4, IGF2BP1, and p-STAT3. Berbamine enhanced the expression of let-7 miRNA family and miR-26b and influenced the downstream targets IGF2BP1 and p-STAT3, respectively. Silencing CXCR4 and ABCG2 downregulated the expression of IGF2BP1 and p-STAT3, respectively. Importantly, berbamine enhanced also levels of exosomal let-7 family and miR-26b, suggesting that berbamine possibly influences the expression of let-7 family and miR-26b through exosome delivery. Exosomes derived from berbamine-treated CabaR-DU145 cells re-sensitized the cells to cabazitaxel. CONCLUSION Berbamine enhanced the toxic activity of cabazitaxel and reversed cabazitaxel resistance potentially through CXCR4/exosomal let-7/IGF2BP1 and ABCG2/exosomal miR-26b/p-STAT3 axes.
Collapse
Affiliation(s)
- Lili Wang
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
| | - Chen Lyu
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
| | - Birgit Stadlbauer
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
- Department of Urology, LMU Klinikum, University Munich, Munich, Germany
| | - Alexander Buchner
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
- Department of Urology, LMU Klinikum, University Munich, Munich, Germany
| | - Elfriede Nößner
- Immunoanalytics: Research Group Tissue Control of Immunocytes, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Munich, Germany
| | - Heike Pohla
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
- Department of Urology, LMU Klinikum, University Munich, Munich, Germany
| |
Collapse
|
6
|
Zhao L, Wang N, Zhang D, Jia Y, Kong F. A comprehensive overview of the relationship between RET gene and tumor occurrence. Front Oncol 2023; 13:1090757. [PMID: 36865807 PMCID: PMC9971812 DOI: 10.3389/fonc.2023.1090757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
RET gene plays significant roles in the nervous system and many other tissues. Rearranged during transfection (RET) mutation is related to cell proliferation, invasion, and migration. Many invasive tumors (e.g., non-small cell lung cancer, thyroid cancer, and breast cancer) were found to have changes in RET. Recently, great efforts have been made against RET. Selpercatinib and pralsetinib, with encouraging efficacy, intracranial activity, and tolerability, were approved by the Food and Drug Administration (FDA) in 2020. The development of acquired resistance is inevitable, and a deeper exploration should be conducted. This article systematically reviewed RET gene and its biology as well as the oncogenic role in multiple cancers. Moreover, we also summarized recent advances in the treatment of RET and the mechanism of drug resistance.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China,*Correspondence: Fanming Kong,
| |
Collapse
|
7
|
Wu CP, Hsieh YJ, Tseng HY, Huang YH, Li YQ, Hung TH, Wang SP, Wu YS. The WD repeat-containing protein 5 (WDR5) antagonist WDR5-0103 restores the efficacy of cytotoxic drugs in multidrug-resistant cancer cells overexpressing ABCB1 or ABCG2. Biomed Pharmacother 2022; 154:113663. [PMID: 36081287 DOI: 10.1016/j.biopha.2022.113663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022] Open
Abstract
The development of multidrug resistance (MDR) is one of the major challenges in the treatment of cancer which is caused by the overexpression of the ATP-binding cassette (ABC) transporters ABCB1 (P-glycoprotein) and/or ABCG2 (BCRP/MXR/ABCP) in cancer cells. These transporters are capable of reducing the efficacy of cytotoxic drugs by actively effluxing them out of cancer cells. Since there is currently no approved treatment for patients with multidrug-resistant tumors, the drug repurposing approach provides an alternative route to identify agents to reverse MDR mediated by ABCB1 and/or ABCG2 in multidrug-resistant cancer cells. WDR5-0103 is a histone H3 lysine 4 (H3K4) methyltransferase inhibitor that disrupts the interaction between the WD repeat-containing protein 5 (WDR5) and mixed-lineage leukemia (MLL) protein. In this study, the effect of WDR5-0103 on MDR mediated by ABCB1 and ABCG2 was determined. We found that in a concentration-dependent manner, WDR5-0103 could sensitize ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to conventional cytotoxic drugs. Our results showed that WDR5-0103 reverses MDR and improves drug-induced apoptosis in multidrug-resistant cancer cells by inhibiting the drug-efflux function of ABCB1 and ABCG2, without altering the protein expression of ABCB1 or ABCG2. The potential sites of interactions of WDR5-0103 with the drug-binding pockets of ABCB1 and ABCG2 were predicted by molecular docking. In conclusion, the MDR reversal activity of WDR5-0103 demonstrated here indicates that it could be used in combination therapy to provide benefits to a subset of patients with tumor expressing high levels of ABCB1 or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | - Ya-Ju Hsieh
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Han-Yu Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan.
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
8
|
Zhao L, Mei Q, Yu Y, Wang N, Zhang D, Liao D, Zuo J, Xie H, Jia Y, Kong F. Research Progress on RET Fusion in Non-Small-Cell Lung Cancer. Front Oncol 2022; 12:894214. [PMID: 35707347 PMCID: PMC9190697 DOI: 10.3389/fonc.2022.894214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Great progress has been made in the treatment of driver gene-positive Non- Small Cell Lung Cancer (NSCLC) in recent years. RET fusion was seen in 0.7% to 2% of NSCLC and was associated with younger age and never-smoker status. The pralsetinib and selpercatinib for RET fusion NSCLC was recommended by the 2021 NSCLC treatment guidelines. This review outlines the research progress in the treatment of RET fusion NSCLC, identifies current challenges and describes proposals for improving the outlook for these patients.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingyun Mei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yongchao Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dongying Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinhui Zuo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongxia Xie
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
9
|
Wu CP, Murakami M, Wu YS, Lin CL, Li YQ, Huang YH, Hung TH, Ambudkar SV. The multi-targeted tyrosine kinase inhibitor SKLB610 resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Biomed Pharmacother 2022; 149:112922. [PMID: 36068781 PMCID: PMC10506422 DOI: 10.1016/j.biopha.2022.112922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
The overexpression of ATP-binding cassette (ABC) transporter ABCB1 (P-glycoprotein) or ABCG2 (BCRP/MXR/ABCP) in cancer cells is frequently associated with the development of multidrug resistance (MDR) in cancer patients, which remains a major obstacle to effective cancer treatment. By utilizing energy derived from ATP hydrolysis, both transporters have been shown to reduce the chemosensitivity of cancer cells by actively effluxing cytotoxic anticancer drugs out of cancer cells. Knowing that there are presently no approved drugs or other therapeutics for the treatment of multidrug-resistant cancers, in recent years, studies have investigated the repurposing of tyrosine kinase inhibitors (TKIs) to act as agents against MDR mediated by ABCB1 and/or ABCG2. SKLB610 is a multi-targeted TKI with potent activity against vascular endothelial growth factor receptor 2 (VEGFR2), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor 2 (FGFR2). In this study, we investigate the interaction of SKLB610 with ABCB1 and ABCG2. We discovered that neither ABCB1 nor ABCG2 confers resistance to SKLB610, but SKLB610 selectively sensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer agents in a concentration-dependent manner. Our data indicate that SKLB610 reverses ABCG2-mediated MDR by attenuating the drug-efflux function of ABCG2 without affecting its total cell expression. These findings are further supported by results of SKLB610-stimulated ABCG2 ATPase activity and in silico docking of SKLB610 in the drug-binding pocket of ABCG2. In summary, we reveal the potential of SKLB610 to overcome resistance to cytotoxic anticancer drugs, which offers an additional treatment option for patients with multidrug-resistant cancers and warrants further investigation.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Chun-Ling Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| |
Collapse
|
10
|
Narayanan S, Fan YF, Gujarati NA, Teng QX, Wang JQ, Cai CY, Yang Y, Chintalapati AJ, Lei Y, Korlipara VL, Chen ZS. VKNG-1 Antagonizes ABCG2-Mediated Multidrug Resistance via p-AKT and Bcl-2 Pathway in Colon Cancer: In Vitro and In Vivo Study. Cancers (Basel) 2021; 13:4675. [PMID: 34572902 PMCID: PMC8470077 DOI: 10.3390/cancers13184675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of multidrug resistance (MDR) to chemotherapeutic drugs is a major problem in the therapy of cancer. Knowledge of the mechanisms of drug resistance in cancer is necessary for developing efficacious therapies. ATP-binding cassette (ABC) transporters are transmembrane proteins that efflux chemotherapeutic drugs from cancer cells, thereby producing MDR. Our research efforts have led to the discovery of VKNG-1, a compound that selectively inhibits the ABCG2 transporter and reverses resistanctabe to standard anticancer drugs both in vitro and in vivo. VKNG-1, at 6 µM, selectively inhibited ABCG2 transporter and sensitized ABCG2-overexpressing drug-resistant cancer cells to the ABCG2 substrate anticancer drugs mitoxantrone, SN-38, and doxorubicin in ABCG2-overexpressing colon cancers. VKNG- 1 reverses ABCG2-mediated MDR by blocking ABCG2 efflux activity and downregulating ABCG2 expression at the mRNA and protein levels. Moreover, VKNG-1 inhibits the level of phosphorylated protein kinase B (PKB/p-AKT), and B-cell lymphoma-2 (Bcl-2) protein which may overcome resistance to anticancer drugs. However, the in vitro translocation of ABCG2 protein did not occur in the presence of 6 µM of VKNG-1. In addition, VKNG-1 enhanced the anticancer efficacy of irinotecan in ABCG2- overexpressing mouse tumor xenografts. Overall, our results suggest that VKNG-1 may, in combination with certain anticancer drugs, represent a treatment to overcome ABCG2-mediated MDR colon cancers.
Collapse
Affiliation(s)
- Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (S.N.); (Y.-F.F.); (N.A.G.); (Q.-X.T.); (J.-Q.W.); (C.-Y.C.); (Y.Y.); (A.J.C.)
| | - Ying-Fang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (S.N.); (Y.-F.F.); (N.A.G.); (Q.-X.T.); (J.-Q.W.); (C.-Y.C.); (Y.Y.); (A.J.C.)
- Department of Hepatobiliary Surgery, Zhu Jiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Nehaben A. Gujarati
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (S.N.); (Y.-F.F.); (N.A.G.); (Q.-X.T.); (J.-Q.W.); (C.-Y.C.); (Y.Y.); (A.J.C.)
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (S.N.); (Y.-F.F.); (N.A.G.); (Q.-X.T.); (J.-Q.W.); (C.-Y.C.); (Y.Y.); (A.J.C.)
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (S.N.); (Y.-F.F.); (N.A.G.); (Q.-X.T.); (J.-Q.W.); (C.-Y.C.); (Y.Y.); (A.J.C.)
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (S.N.); (Y.-F.F.); (N.A.G.); (Q.-X.T.); (J.-Q.W.); (C.-Y.C.); (Y.Y.); (A.J.C.)
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (S.N.); (Y.-F.F.); (N.A.G.); (Q.-X.T.); (J.-Q.W.); (C.-Y.C.); (Y.Y.); (A.J.C.)
| | - Anirudh J. Chintalapati
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (S.N.); (Y.-F.F.); (N.A.G.); (Q.-X.T.); (J.-Q.W.); (C.-Y.C.); (Y.Y.); (A.J.C.)
| | - Yixiong Lei
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China;
| | - Vijaya L. Korlipara
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (S.N.); (Y.-F.F.); (N.A.G.); (Q.-X.T.); (J.-Q.W.); (C.-Y.C.); (Y.Y.); (A.J.C.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (S.N.); (Y.-F.F.); (N.A.G.); (Q.-X.T.); (J.-Q.W.); (C.-Y.C.); (Y.Y.); (A.J.C.)
| |
Collapse
|
11
|
Narayanan S, Wu ZX, Wang JQ, Ma H, Acharekar N, Koya J, Yoganathan S, Fang S, Chen ZS, Pan Y. The Spleen Tyrosine Kinase Inhibitor, Entospletinib (GS-9973) Restores Chemosensitivity in Lung Cancer Cells by Modulating ABCG2-mediated Multidrug Resistance. Int J Biol Sci 2021; 17:2652-2665. [PMID: 34326700 PMCID: PMC8315011 DOI: 10.7150/ijbs.61229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are important in managing lymphoid malignancies by targeting B-cell receptor signaling pathways. Entospletinib (GS-9973) is an oral, selective inhibitor of spleen tyrosine kinase (Syk), currently in the phase II clinical trials for the treatment of chronic lymphocytic leukemia. Syk is abundantly present in the cells of hematopoietic lineage that mediates cell proliferation, differentiation, and adhesion. In this current study, we evaluated the efficacy of GS-9973 to overcome multidrug resistance (MDR) due to the overexpression of the ABCG2 transporter in the non-small cell lung cancer (NSCLC) cell line, NCI-H460/MX20. In vitro, 3 μM of GS-9973 reversed the drug resistance of NCI-H460/MX20 cell line to mitoxantrone or doxorubicin. GS-9973, at 3 μM reverses ABCG2-mediated MDR by blocking ABCG2 efflux activity and downregulating ABCG2 expression at the protein level but did not alter the ABCG2 mRNA expression and subcellular localization of the ABCG2 protein compared to drug-resistant cells incubated with the vehicle. GS-9973 produced a moderate concentration-dependent increase in the ATPase activity of ABCG2 (EC50 = 0.42 µM) and molecular docking data indicated that GS-9973 had a high affinity (-10.226 kcal/mol) for the substrate-binding site of ABCG2. Finally, HPLC analysis proved that the intracellular concentration of GS-9973 is not significantly different in both parental and resistant cell lines. In conclusion, our study suggests that in vitro, GS-9973 in combination with certain anticancer drugs, represent a strategy to overcome ABCG2-mediated MDR cancers.
Collapse
Affiliation(s)
- Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Hansu Ma
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, PR China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yihang Pan
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| |
Collapse
|