1
|
Kanuparthy M, Manthana R, Kaushik H, Xiang K, Hamze J, Marimekala D, Feng J, Sellke FW. Microvascular Dysfunction Following Cardioplegic Arrest and Cardiopulmonary Bypass: Impacts of Diabetes and Hypertension. Biomedicines 2025; 13:409. [PMID: 40002822 PMCID: PMC11853148 DOI: 10.3390/biomedicines13020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Cardioplegic arrest and cardiopulmonary bypass (CP/CPB) are known to engender microvascular dysfunction in patients undergoing cardiac surgery. These effects are significantly varied by patient comorbidities including diabetes and hypertension. Both diabetes and hypertension are associated with worse outcomes after cardiac surgery, partly related to increased microvascular complications. In this review, we examine several key facets of microvascular dysfunction after CP/CPB: microvascular endothelial and vasomotor dysfunction, altered gene and protein expression, endothelial adherens junction dysfunction, and programmed cell death as they relate to diabetes and hypertension. This review examines both classical techniques, including microvessel reactivity assays, and modern multiomic approaches to characterizing these microvascular changes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (M.K.); (R.M.); (H.K.); (K.X.); (J.H.); (D.M.); (J.F.)
| |
Collapse
|
2
|
Xing H, Kant S, Kanuparthy M, Harris D, Stone C, Broadwin M, Zhang Z, Pearson E, Hu J, Sauer A, Princiotto A, Harrington EO, de la Monte SM, Sellke F, Feng J. Impaired cerebral microvascular reactivity and endothelial SK channel activity in a streptozotocin-treated mouse model of Alzheimer's disease. J Alzheimers Dis 2025; 103:1112-1125. [PMID: 39791382 PMCID: PMC11892793 DOI: 10.1177/13872877241309120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disease marked by increased amyloid-β (Aβ) deposition, tau hyperphosphorylation, impaired energy metabolism, and chronic ischemia-type injury. Cerebral microvascular dysfunction likely contributes to AD pathology, but its precise pathogenic role has been poorly defined. OBJECTIVE To examine microvascular reactivity to endothelium-dependent vasodilators and small conductance calcium-activated potassium (SK) channel activity in an intracerebral streptozotocin (STZ)-induced AD mouse model. METHODS Control and STZ-AD mice underwent Morris Water Maze and Barnes testing, after which cerebral microvascular and brain microvascular endothelial cells (MBMECs) were dissected to assess microvascular reactivity, responses to SK channel activator NS309, and ion-channel current recordings using whole-cell patch clamp methodology. Control mouse cerebral microvascular and human brain microvascular endothelial cells (HBMECs) were treated with soluble Aβ1-42 peptide to characterize microvascular reactivity and endothelial potassium currents. RESULTS STZ-AD mice exhibited impaired performance vs control mice in behavioral testing. STZ-AD mice also exhibited diminished cerebral microvascular responsiveness and MBMECs potassium current augmentation in response to NS309 compared with control mice. Incubation of control mouse cerebral micro-vessels and HBMECs with soluble Aβ (1 µM) for 2 h attenuated relaxation responses to NS309 and diminished NS309-sensitive endothelial potassium currents. CONCLUSIONS STZ-AD mice exhibited impaired microvascular relaxation responses to endothelium-dependent vasodilators; SK/IK channel dysfunction may be involved in the mechanism of this impairment. Acute treatment with Aβ produced dysregulated cerebrovascular endothelial SK/IK channels. Further elucidation of the role of microvascular dysfunction in AD is needed to prevent the chronic ischemia-type injury that contributes to cognitive decline.
Collapse
Affiliation(s)
- Hang Xing
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Shawn Kant
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Meghamsh Kanuparthy
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Dwight Harris
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher Stone
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Zhiqi Zhang
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Elena Pearson
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Jiayu Hu
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Ava Sauer
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Amy Princiotto
- Vascular Research Laboratory, Providence VA Medical Center, Alpert Medical School of Brown University, Providence, RI, USA
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence VA Medical Center, Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Jun Feng
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Chen Y, Li S, Guan B, Yan X, Huang C, Du Y, Yang F, Zhang N, Li Y, Lu J, Wang J, Zhang J, Chen Z, Chen C, Kong X. MAP4K4 exacerbates cardiac microvascular injury in diabetes by facilitating S-nitrosylation modification of Drp1. Cardiovasc Diabetol 2024; 23:164. [PMID: 38724987 PMCID: PMC11084109 DOI: 10.1186/s12933-024-02254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.
Collapse
Affiliation(s)
- Yuqiong Chen
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
| | - Su Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Bo Guan
- Department of Geriatrics, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Xiaopei Yan
- Department of Respiratory Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Chao Huang
- Ministry of Science and Technology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 215002, Suzhou, Jiangsu, China
| | - Yingqiang Du
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Fan Yang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, 210008, Nanjing, China
- Branch of National Clinical Research Center for Metabolic Diseases, 210008, Nanjing, China
| | - Nannan Zhang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Yafei Li
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Jian Lu
- Department of Critical Care Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiankang Wang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Jun Zhang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
| | - Chao Chen
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
| | - Xiangqing Kong
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
- Department of Cardiology, Gulou District, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
4
|
Xing H, Sabe SA, Shi G, Harris DD, Liu Y, Sellke FW, Feng J. Role of Protein Kinase C in Metabolic Regulation of Coronary Endothelial Small Conductance Calcium-Activated Potassium Channels. J Am Heart Assoc 2024; 13:e031028. [PMID: 38293916 PMCID: PMC11056132 DOI: 10.1161/jaha.123.031028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Small conductance calcium-activated potassium (SK) channels are largely responsible for endothelium-dependent coronary arteriolar relaxation. Endothelial SK channels are downregulated by the reduced form of nicotinamide adenine dinucleotide (NADH), which is increased in the setting of diabetes, yet the mechanisms of these changes are unclear. PKC (protein kinase C) is an important mediator of diabetes-induced coronary endothelial dysfunction. Thus, we aimed to determine whether NADH signaling downregulates endothelial SK channel function via PKC. METHODS AND RESULTS SK channel currents of human coronary artery endothelial cells were measured by whole cell patch clamp method in the presence/absence of NADH, PKC activator phorbol 12-myristate 13-acetate, PKC inhibitors, or endothelial PKCα/PKCβ knockdown by using small interfering RNA. Human coronary arteriolar reactivity in response to the selective SK activator NS309 was measured by vessel myography in the presence of NADH and PKCβ inhibitor LY333531. NADH (30-300 μmol/L) or PKC activator phorbol 12-myristate 13-acetate (30-300 nmol/L) reduced endothelial SK current density, whereas the selective PKCᵦ inhibitor LY333531 significantly reversed the NADH-induced SK channel inhibition. PKCβ small interfering RNA, but not PKCα small interfering RNA, significantly prevented the NADH- and phorbol 12-myristate 13-acetate-induced SK inhibition. Incubation of human coronary artery endothelial cells with NADH significantly increased endothelial PKC activity and PKCβ expression and activation. Treating vessels with NADH decreased coronary arteriolar relaxation in response to the selective SK activator NS309, and this inhibitive effect was blocked by coadministration with PKCβ inhibitor LY333531. CONCLUSIONS NADH-induced inhibition of endothelial SK channel function is mediated via PKCβ. These findings may provide insight into novel therapeutic strategies to preserve coronary microvascular function in patients with metabolic syndrome and coronary disease.
Collapse
Affiliation(s)
- Hang Xing
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Sharif A. Sabe
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Guangbin Shi
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Dwight D. Harris
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Yuhong Liu
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Jun Feng
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| |
Collapse
|
5
|
Wang T, Wang X, Fu T, Ma Y, Wang Q, Zhang S, Zhang X, Zhou H, Chang X, Tong Y. Roles of mitochondrial dynamics and mitophagy in diabetic myocardial microvascular injury. Cell Stress Chaperones 2023; 28:675-688. [PMID: 37755621 PMCID: PMC10746668 DOI: 10.1007/s12192-023-01384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Myocardial microvessels are composed of a monolayer of endothelial cells, which play a crucial role in maintaining vascular barrier function, luminal latency, vascular tone, and myocardial perfusion. Endothelial dysfunction is a key factor in the development of cardiac microvascular injury and diabetic cardiomyopathy. In addition to their role in glucose oxidation and energy metabolism, mitochondria also participate in non-metabolic processes such as apoptosis, intracellular ion handling, and redox balancing. Mitochondrial dynamics and mitophagy are responsible for regulating the quality and quantity of mitochondria in response to hyperglycemia. However, these endogenous homeostatic mechanisms can both preserve and/or disrupt non-metabolic mitochondrial functions during diabetic endothelial damage and cardiac microvascular injury. This review provides an overview of the molecular features and regulatory mechanisms of mitochondrial dynamics and mitophagy. Furthermore, we summarize findings from various investigations that suggest abnormal mitochondrial dynamics and defective mitophagy contribute to the development of diabetic endothelial dysfunction and myocardial microvascular injury. Finally, we discuss different therapeutic strategies aimed at improving endothelial homeostasis and cardiac microvascular function through the enhancement of mitochondrial dynamics and mitophagy.
Collapse
Affiliation(s)
- Tong Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xinwei Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Tong Fu
- Brandeis University, Waltham, MA, 02453, USA
| | - Yanchun Ma
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuxiang Zhang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xiao Zhang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Xing Chang
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
6
|
Kant S, Xing H, Liu Y, Harrington EO, Sellke FW, Feng J. Acute protein kinase C beta inhibition preserves coronary endothelial function after cardioplegic hypoxia/reoxygenation. JTCVS OPEN 2023; 15:242-251. [PMID: 37808045 PMCID: PMC10556935 DOI: 10.1016/j.xjon.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 10/10/2023]
Abstract
Objective Protein kinase C (PKC) influences myocardial contractility and susceptibility to long-term cardiac dysfunction after ischemia-reperfusion injury. In diabetes, PKC inhibition has a protective effect in terms of microvascular dysfunction. SK-channel dysfunction also influences endothelial dysfunction in cardioplegic hypoxia-reoxygenation (CP-H/R). Here, we examine whether acute inhibition of PKC beta protects against CP-H/R-induced coronary endothelial and SK channel dysfunction. Methods Isolated mouse coronary arterioles, half pretreated with selective PKC inhibitor ruboxistaurin (RBX), were subjected to hyperkalemic, cardioplegic hypoxia (1 hour), and reoxygenation (1 hour) with Krebs buffer. Sham control vessels were continuously perfused with oxygenated Krebs buffer without CP-H/R. After 1 hour of reoxygenation, responses to the endothelium-dependent vasodilator adenosine-diphosphate (ADP) and the SK-channel activator NS309 were examined. Endothelial SK-specific potassium currents from mouse heart endothelial cells were examined using whole-cell path clamp configurations in response to NS309 and SK channel blockers apamin and TRAM34. Results CP-H/R significantly decreased coronary relaxation responses to ADP (P = .006) and NS309 (P = .0001) compared with the sham control group. Treatment with selective PKC beta inhibitor RBX significantly increased recovery of coronary relaxation responses to ADP (P = .031) and NS309 (P = .004) after CP-H/R. Treatment with RBX significantly increased NS309-mediated potassium currents following CP-H/R (P = .0415). Apamin and TRAM34 sensitive currents were significantly greater in CP-H/R + RBX versus CP-H/R mouse heart endothelial cells (P = .0027). Conclusions Acute inhibition of PKC beta significantly protected mouse coronary endothelial function after CP-H/R injury. This suggests that acute PKC beta inhibition may be a novel approach for preventing microvascular dysfunction during CP-H/R.
Collapse
Affiliation(s)
- Shawn Kant
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Hang Xing
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Yuhong Liu
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Elizabeth O. Harrington
- Vascular Research Laboratory, Department of Medicine, Providence VA Medical Center, Alpert Medical School of Brown University, Providence, RI
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Jun Feng
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
7
|
Sabe SA, Feng J, Sellke FW, Abid MR. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am J Physiol Heart Circ Physiol 2022; 322:H819-H841. [PMID: 35333122 PMCID: PMC9018047 DOI: 10.1152/ajpheart.00603.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.
Collapse
Affiliation(s)
- Sharif A Sabe
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Jun Feng
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
8
|
Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis 2022; 25:307-329. [PMID: 35303170 DOI: 10.1007/s10456-022-09835-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Coronary microvascular endothelial dysfunction is both a culprit and a victim of diabetes, and can accelerate diabetes-related microvascular and macrovascular complications by promoting vasoconstrictive, pro-inflammatory and pro-thrombotic responses. Perturbed mitochondrial function induces oxidative stress, disrupts metabolism and activates apoptosis in endothelial cells, thus exacerbating the progression of coronary microvascular complications in diabetes. The mitochondrial quality surveillance (MQS) system responds to stress by altering mitochondrial metabolism, dynamics (fission and fusion), mitophagy and biogenesis. Dysfunctional mitochondria are prone to fission, which generates two distinct types of mitochondria: one with a normal and the other with a depolarized mitochondrial membrane potential. Mitochondrial fusion and mitophagy can restore the membrane potential and homeostasis of defective mitochondrial fragments. Mitophagy-induced decreases in the mitochondrial population can be reversed by mitochondrial biogenesis. MQS abnormalities induce pathological mitochondrial fission, delayed mitophagy, impaired metabolism and defective biogenesis, thus promoting the accumulation of unhealthy mitochondria and the activation of mitochondria-dependent apoptosis. In this review, we examine the effects of MQS on mitochondrial fitness and explore the association of MQS disorders with coronary microvascular endothelial dysfunction in diabetes. We also discuss the potential to treat diabetes-related coronary microvascular endothelial dysfunction using novel MQS-altering drugs.
Collapse
|
9
|
Chen JW, Ma PW, Yuan H, Wang WL, Lu PH, Ding XR, Lun YQ, Yang Q, Lu LJ. mito-TEMPO Attenuates Oxidative Stress and Mitochondrial Dysfunction in Noise-Induced Hearing Loss via Maintaining TFAM-mtDNA Interaction and Mitochondrial Biogenesis. Front Cell Neurosci 2022; 16:803718. [PMID: 35210991 PMCID: PMC8861273 DOI: 10.3389/fncel.2022.803718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The excessive generation of reactive oxygen species (ROS) and mitochondrial damage have been widely reported in noise-induced hearing loss (NIHL). However, the specific mechanism of noise-induced mitochondrial damage remains largely unclear. In this study, we showed that acoustic trauma caused oxidative damage to mitochondrial DNA (mtDNA), leading to the reduction of mtDNA content, mitochondrial gene expression and ATP level in rat cochleae. The expression level and mtDNA-binding function of mitochondrial transcription factor A (TFAM) were impaired following acoustic trauma without affecting the upstream PGC-1α and NRF-1. The mitochondria-target antioxidant mito-TEMPO (MT) was demonstrated to enter the inner ear after the systemic administration. MT treatment significantly alleviated noise-induced auditory threshold shifts 3d and 14d after noise exposure. Furthermore, MT significantly reduced outer hair cell (OHC) loss, cochlear ribbon synapse loss, and auditory nerve fiber (ANF) degeneration after the noise exposure. In addition, we found that MT treatment effectively attenuated noise-induced cochlear oxidative stress and mtDNA damage, as indicated by DHE, 4-HNE, and 8-OHdG. MT treatment also improved mitochondrial biogenesis, ATP generation, and TFAM-mtDNA interaction in the cochlea. These findings suggest that MT has protective effects against NIHL via maintaining TFAM-mtDNA interaction and mitochondrial biogenesis based on its ROS scavenging capacity.
Collapse
Affiliation(s)
- Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng-Wei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei-Long Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei-Heng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue-Rui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Qiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Ren B, Ramchandran R, Yang X. Editorial: Molecular Mechanisms and Signaling in Endothelial Cell Biology and Vascular Heterogeneity. Front Cell Dev Biol 2021; 9:821100. [PMID: 34977049 PMCID: PMC8718799 DOI: 10.3389/fcell.2021.821100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Bin Ren
- Department of Surgery, O’Neal Comprehensive Cancer Center, and Comprehensive Cardiovascular Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Bin Ren,
| | - Ramani Ramchandran
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Centers for Cardiovascular Research and Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|