1
|
Parsaei H, Gorgich EAC, Eateghadi A, Tavakoli N, Ground M, Hosseini S. Acceleration of bone healing by a growth factor-releasing allo-hybrid graft. Tissue Cell 2025; 93:102740. [PMID: 39864209 DOI: 10.1016/j.tice.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Human amniotic membrane (hAM) has a highly biocompatible natural scaffold that is abundant in several extracellular matrix (ECM) components, including but not limited to platelet-derived growth factor (PDGF), transforming growth factor (TGF), and fibroblast growth factor (FGF). In our study, we have focused on a mixture of hAM and demineralized bone matrix (DBM) as an allo-hybrid graft to deliver it into the site of bone defect to decrease bone remodeling time. METHODS Allo-hybrid grafts were prepared by coating the jelly made of decellularized and lyophilized hAM (AMJ) on the surface of DBM and subsequently underwent in vitro studies, such as alkaline phosphatase activity, MTT assay, and SEM analysis. Twenty-four male rats were included in the study, and after creating calvarial defects, rats were divided into four groups: DBM implanted, allo-hybrid implanted, AMJ injection, and a negative control (NC). Bone regeneration was assessed using computed tomography (CT scan) and histological analysis at 1, 2, and 3 months after surgery. RESULTS CT scan analysis clearly showed improved new bone growth in the allo-hybrid group compared to the NC group. Also, the Hounsfield unit of the allo-hybrid group (774.91 ± 47.8) after 90 days confirms CT scans. Histological staining revealed immature bone in allo-hybrid and DBM groups, along with the creation of a medullary cavity and bone marrow two months after surgery. Three months after surgery, the allo-hybrid group showed signs of new, mature bone, while no sign of healing could be seen in the NC group at any time points. Over a 90-day period, the allo-hybrid group recovered the bone defect area near 90 %. It is relatively twice as much as AMJ group. CONCLUSION Histological properties of bone defects and bone regeneration can both be improved by allo-hybrid grafts coated with AMJ.
Collapse
Affiliation(s)
- Houman Parsaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Abdollsamad Eateghadi
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narjes Tavakoli
- School of Industrial Design, College of Fine Arts, University of Tehran, Tehran 1415564583, Iran
| | - Marcus Ground
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - SeyedJamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran 159163-4311, Iran.
| |
Collapse
|
2
|
Liang W, Zhou C, Deng Y, Fu L, Zhao J, Long H, Ming W, Shang J, Zeng B. The current status of various preclinical therapeutic approaches for tendon repair. Ann Med 2024; 56:2337871. [PMID: 38738394 PMCID: PMC11095292 DOI: 10.1080/07853890.2024.2337871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Yongjun Deng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
3
|
Forbes J, Jackson GR, Knapik DM, Childers JT, Donley C, Coutelle N, Sabesan VJ. The use of amniotic tissue-derived products in orthopedic surgery: A narrative review. Injury 2024; 55:111901. [PMID: 39341049 DOI: 10.1016/j.injury.2024.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/25/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Amniotic-derived products have been used for decades in various medical subspecialties and have proven to be a safe method of allograft tissue transplantation. These products have shown promising preclinical and early clinical results in the treatment of tendon/ligament injuries, cartilage defects, and osteoarthritis. The therapeutic benefits of amniotic-derived products are likely due to intrinsic properties, such as their structure as an extracellular matrix and concentration of growth factors, as well as anti-inflammatory, antifibrotic, and antimicrobial molecules. We performed a narrative review, evaluating the pre-clinical and clinical use of amniotic-derived products in musculoskeletal injuries such as osteoarthritis, Achilles tendinopathy, plantar fasciitis, lateral epicondylitis, chronic stenosing tenosynovitis, and nerve, cartilage and tendon repair or reconstruction, along with fracture healing treatment. In vitro and pre-clinical studies using amniotic-derived products for orthopedic treatments have shown promising results and provide the foundation for further human trials to be conducted. With the rise of commercially available biologics, incorporating amniotic products into orthopedic practice is becoming more accessible, while further studies investigating long-term outcomes and potential adverse events are necessary.
Collapse
Affiliation(s)
- Jessica Forbes
- Charles E. Schmidt College of Medicine Florida Atlantic University, Boca Raton, FL, USA
| | - Garrett R Jackson
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, 65211, USA.
| | - Derrick M Knapik
- Department of Orthopaedic Surgery, Washington University and Barnes-Jewish Orthopedic Center, Chesterfield, MO, USA
| | - Justin T Childers
- Charles E. Schmidt College of Medicine Florida Atlantic University, Boca Raton, FL, USA
| | - Connor Donley
- JFK/University of Miami Miller School of Medicine Department of Orthopedics, Lake Worth, FL, USA
| | - Nino Coutelle
- JFK/University of Miami Miller School of Medicine Department of Orthopedics, Lake Worth, FL, USA
| | - Vani J Sabesan
- Orthopedic Center of Palm Beach County, Palm Beach, FL, USA
| |
Collapse
|
4
|
Yaqoob F, Hayat MK, Chaughtai MS, Khan S, Bashir MB. Mesenchymal stem cells derived from human adipose tissue exhibit significantly higher chondrogenic differentiation potential compared to those from rats. Biomed Mater Eng 2024:BME240062. [PMID: 39240621 DOI: 10.3233/bme-240062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND Osteoarthritis is a prevalent joint disease affecting both humans and animals. It is characterized by articular cartilage degeneration and joint surface eburnation. Currently, no effective pharmacological treatment is available to restore the original function and structure of defective cartilage. OBJECTIVE This study explores the potential of stem cell-based therapy in treating joint diseases involving cartilage degeneration, offering a promising avenue for future research and treatment. The primary aim was to compare the characteristics and, more importantly, the chondrogenic differentiation potential of human and rat adipose-derived mesenchymal stem cells (AD-MSCs). METHODS Rat adipose tissue was collected from Sprague Dawley rats, while human adipose tissue was obtained in the form of lipoaspirate. The mesenchymal stem cells (MSCs) were then harvested using collagenase enzyme and subcultured. We meticulously evaluated and compared the cell morphology, percentage of cell viability, population doubling time, metabolic proliferation, and chondrogenic differentiation potential of MSCs harvested from both sources. Chondrogenic differentiation was induced at passage 3 using the 3D pellet culture method and assessed through histological and molecular analysis. RESULTS The findings revealed that human and rat AD-MSCs were phenotypically identical, and an insignificant difference was found in cell morphology, percentage of cell viability, metabolic proliferation, and population doubling time. However, the chondrogenic differentiation potential of human AD-MSCs was evaluated as significantly higher than that of rat AD-MSCs. CONCLUSION The current study suggests that research regarding chondrogenic differentiation of rat AD-MSCs can be effectively translated to humans. This discovery is a significant contribution to the field of regenerative medicine and has the potential to advance our understanding of stem cell-based therapy for joint diseases.
Collapse
Affiliation(s)
- Faisal Yaqoob
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore, Pakistan
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Muhammad Khizer Hayat
- Center for Animal Diagnostics, Chughtai Lab, Lahore, Pakistan
- Department of Pathology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Muhammad Sharjeel Chaughtai
- Department of Pathology, University of Veterinary & Animal Sciences, Lahore, Pakistan
- Department of Farm Animals & Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Sehrish Khan
- Department of Clinical Medicine & Surgery, University of Veterinary & Animal Sciences, Lahore, Pakistan
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Musa Bin Bashir
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Iravani K, Mousavi S, Owji SM, Sani M, Owji SH. Effect of amniotic membrane/collagen scaffolds on laryngeal cartilage repair. Laryngoscope Investig Otolaryngol 2024; 9:e1222. [PMID: 38362193 PMCID: PMC10866587 DOI: 10.1002/lio2.1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives Laryngeal cartilage defects are a major problem that greatly impacts structural integrity and function. Cartilage repair is also a challenging issue. This study evaluated the efficacy of a collagen scaffold enveloped by amniotic membrane (AM/C) on laryngeal cartilage repair. Study Design Experimental animal study. Methods Fourteen Dutch rabbits were enrolled in the study. A 5 mm cartilage defect was created in the right and left thyroid lamina. The animals were divided into two groups randomly. Group 1 collagen scaffolds and group 2 AM/C were applied to the right side defects. Left side defects were not repaired, serving as control. Histologic evaluation was done 45 and 90 days following collagen and AM/C application with criteria of tissue and cell morphology, lacuna formation, vascularization, and inflammation. Results Significant improvement in cartilage repair was observed in the AM/C side compared to the control side in all histologic criteria after 45 days (p<.05). After 90 days, cartilage repair improved in cell morphology, lacuna formation, and inflammation significantly (p<.05). Conclusion The combination of amniotic membrane and collagen scaffolds provides a promising treatment modality for improving the repair of laryngeal cartilage defects. Level of Evidence NA.
Collapse
Affiliation(s)
- Kamyar Iravani
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical SciencesShirazIran
| | - Simin Mousavi
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical SciencesShirazIran
| | - Seyed Mohammad Owji
- Department of PathologySchool of Medicine, Shiraz University of Medical SciencesShirazIran
| | - Mahsa Sani
- Shiraz Institute for Stem Cell and Regenerative Medicine, Shiraz University of Medical SciencesShirazIran
| | - Seyed Hossein Owji
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical SciencesShirazIran
| |
Collapse
|
6
|
Taninaka A, Kabata T, Hayashi K, Kajino Y, Inoue D, Ohmori T, Ueoka K, Yamamuro Y, Kataoka T, Saiki Y, Yanagi Y, Ima M, Iyobe T, Tsuchiya H. Chondroprotective Effects of Chondrogenic Differentiated Adipose-Derived Mesenchymal Stem Cells Sheet on Degenerated Articular Cartilage in an Experimental Rabbit Model. Bioengineering (Basel) 2023; 10:bioengineering10050574. [PMID: 37237645 DOI: 10.3390/bioengineering10050574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) have been studied for many years as a therapeutic option for osteoarthritis (OA); however, their efficacy remains insufficient. Since platelet-rich plasma (PRP) induces chondrogenic differentiation in ADSCs and the formation of a sheet structure by ascorbic acid can increase the number of viable cells, we hypothesized that the injection of chondrogenic cell sheets combined with the effects of PRP and ascorbic acid may hinder the progression of OA. The effects of induction of differentiation by PRP and formation of sheet structure by ascorbic acid on changes in chondrocyte markers (collagen II, aggrecan, Sox9) in ADSCs were evaluated. Changes in mucopolysaccharide and VEGF-A secretion from cells injected intra-articularly in a rabbit OA model were also evaluated. ADSCs treated by PRP strongly chondrocyte markers, including type II collagen, Sox9, and aggrecan, and their gene expression was maintained even after sheet-like structure formation induced by ascorbic acid. In this rabbit OA model study, the inhibition of OA progression by intra-articular injection was improved by inducing chondrocyte differentiation with PRP and sheet structure formation with ascorbic acid in ADSCs.
Collapse
Affiliation(s)
- Atsushi Taninaka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Tamon Kabata
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yoshitomo Kajino
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Daisuke Inoue
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Takaaki Ohmori
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Ken Ueoka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yuki Yamamuro
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Tomoyuki Kataoka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yoshitomo Saiki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yu Yanagi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Musashi Ima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Takahiro Iyobe
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| |
Collapse
|
7
|
Guo X, Xi L, Yu M, Fan Z, Wang W, Ju A, Liang Z, Zhou G, Ren W. Regeneration of articular cartilage defects: Therapeutic strategies and perspectives. J Tissue Eng 2023; 14:20417314231164765. [PMID: 37025158 PMCID: PMC10071204 DOI: 10.1177/20417314231164765] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Articular cartilage (AC), a bone-to-bone protective device made of up to 80% water and populated by only one cell type (i.e. chondrocyte), has limited capacity for regeneration and self-repair after being damaged because of its low cell density, alymphatic and avascular nature. Resulting repair of cartilage defects, such as osteoarthritis (OA), is highly challenging in clinical treatment. Fortunately, the development of tissue engineering provides a promising method for growing cells in cartilage regeneration and repair by using hydrogels or the porous scaffolds. In this paper, we review the therapeutic strategies for AC defects, including current treatment methods, engineering/regenerative strategies, recent advances in biomaterials, and present emphasize on the perspectives of gene regulation and therapy of noncoding RNAs (ncRNAs), such as circular RNA (circRNA) and microRNA (miRNA).
Collapse
Affiliation(s)
- Xueqiang Guo
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Lingling Xi
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Mengyuan Yu
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Weiyun Wang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Andong Ju
- Abdominal Surgical Oncology, Xinxiang
Central Hospital, Institute of the Fourth Affiliated Hospital of Xinxiang Medical
University, Xinxiang, China
| | - Zhuo Liang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Guangdong Zhou
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Guangdong Zhou, Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639
Shanghai Manufacturing Bureau Road, Shanghai 200011, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Wenjie Ren, Institute of Regenerative
Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical
University, 601 Jinsui Avenue, Hongqi District, Xinxiang 453003, Henan, China.
| |
Collapse
|
8
|
Zhang J, Xin X, Zhang H, Zhu Y, Ye Y, Li D. The Efficacy of Chinese Herbal Medicine in Animal Models of Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4892215. [PMID: 35996403 PMCID: PMC9392647 DOI: 10.1155/2022/4892215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 12/30/2022]
Abstract
Objective This study aimed to evaluate the efficacy of Chinese herbal medicine (CHM) on ovarian mass, weight, sex hormone disorders, and insulin resistance in animal models of polycystic ovary syndrome (PCOS). Methods This systematic review and meta-analysis was conducted through a comprehensive search in three databases to find studies testing CHM in animal models of PCOS. Two researchers independently reviewed the retrieval, extraction, and quality assessment of the dataset. The pooled effects were calculated using random-effect models; heterogeneity was explored through subgroup analysis; and stability was assessed through sensitivity analysis. In addition, publication bias was assessed using the Egger's bias test. Results Fifteen studies with twelve mice and 463 rats published from 2016 to 2021 met the inclusion criteria. The results of primary outcomes revealed that CHM therapy was significantly different with control animals in ovarian mass and testosterone (SMD, -1.01 (95% CI, -1.58, -1.45); SMD, -1.62 (95% CI, -2.07, -1.16), respectively). The secondary outcomes as well showed an overall positive effect of CHM compared with control animals in weight (SMD, -1.02 (95% CI, -1.39, -0.65)), follicle-stimulating hormone (FSH) (SMD, 0.58 (95% CI, 0.19, 0.97)), luteinizing hormone (LH) (SMD, -0.94 [95% CI, -1.25, -0.64)), homeostasis model assessment-insulin resistance (HOMA-IR) (SMD, -1.24 (95% CI, -1.57, -0.92)). Subgroup analyses indicated that PCOS induction drug, formula composition, random allocation, and assessment of model establishment were relevant factors that influenced the effects of interventions. The stability of the meta-analysis was showed robust through sensitivity analysis. The publication bias was substantial. Conclusions Administration with CHM revealed a statistically positive effect on ovarian mass, weight, sex hormone disorders, and insulin resistance. Moreover, these data call for further high-quality studies investigating the underlying mechanism in more depth.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xiyan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Haolin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yutian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
9
|
Chen YC, Liao HJ, Hsu YM, Shen YS, Chang CH. Delivery of Mesenchymal Stem Cell in Dialdehyde Methylcellulose-Succinyl-Chitosan Hydrogel Promotes Chondrogenesis in a Porcine Model. Polymers (Basel) 2022; 14:polym14071474. [PMID: 35406348 PMCID: PMC9002496 DOI: 10.3390/polym14071474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the limitation in the current treatment modalities, such as secondary surgery in ACI and fibrocartilage formation in microfracture surgery, various scaffolds or hydrogels have been developed for cartilage regeneration. In the present study, we used sodium periodate to oxidize methylcellulose and formed dialdehyde methylcellulose (DAC) after dialysis and freeze-drying process, DAC was further mixed with succinyl-chitosan (SUC) to form an DAC-SUC in situ forming hydrogel. The hydrogel is a stiffness, elastic-like and porous hydrogel according to the observation of SEM and rheological analysis. DAC-SUC13 hydrogel possess well cell-compatibility as well as biodegradability. Most bone marrow mesenchymal stem cells (BM-pMSCs) were alive in the hydrogel and possess chondrogenesis potential. According to the results of animal study, we found DAC-SUC13 hydrogel can function as a stem cell carrier to promote glycosaminoglycans and type II collagen synthesis in the osteochondral defects of porcine knee. These findings suggested that DAC-SUC13 hydrogel combined with stem cell is a potential treatment for cartilage defects repair in the future.
Collapse
Affiliation(s)
- Yu-Chun Chen
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan;
| | - Hsiu-Jung Liao
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; (H.-J.L.); (Y.-M.H.); (Y.-S.S.)
| | - Yuan-Ming Hsu
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; (H.-J.L.); (Y.-M.H.); (Y.-S.S.)
| | - Yi-Shan Shen
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; (H.-J.L.); (Y.-M.H.); (Y.-S.S.)
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; (H.-J.L.); (Y.-M.H.); (Y.-S.S.)
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City 320315, Taiwan
- Correspondence:
| |
Collapse
|