1
|
Deng H, Wang X, Jiang ZA, Xu J, Zhang Y, Zhou Y, Gong J, Lu XY, Hou YF, Zhang H. Clinical potential and experimental validation of prognostic genes in hepatocellular carcinoma revealed by risk modeling utilizing single cell and transcriptome constructs. Front Immunol 2025; 16:1541252. [PMID: 40255404 PMCID: PMC12006083 DOI: 10.3389/fimmu.2025.1541252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/03/2025] [Indexed: 04/22/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the leading cause of tumor-related mortality worldwide. There is an urgent need for predictive biomarkers to guide treatment decisions. This study aimed to identify robust prognostic genes for HCC and to establish a theoretical foundation for clinical interventions. Methods The HCC datasets were obtained from public databases and then differential expression analysis were used to obtain significant gene expression profiles. Subsequently, univariate Cox regression analysis and PH assumption test were performed, and a risk model was developed using an optimal algorithm from 101 combinations on the TCGA-LIHC dataset to pinpoint prognostic genes. Immune infiltration and drug sensitivity analyses were conducted to assess the impact of these genes and to explore potential chemotherapeutic agents for HCC. Additionally, single-cell analysis was employed to identify key cellular players and their interactions within the tumor microenvironment. Finally, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was utilized to validate the roles of these prognostic genes in HCC. Results A total of eight prognostic genes were identified (MCM10, CEP55, KIF18A, ORC6, KIF23, CDC45, CDT1, and PLK4). The risk model, constructed based on these genes, was effective in predicting survival outcomes for HCC patients. CEP55 exhibited the strongest positive correlation with activated CD4 T cells. The top 10 drugs showed increased sensitivity in the low-risk group. B cells were identified as key cellular components with the highest interaction numbers and strengths with macrophages in both HCC and control groups. Prognostic genes were more highly expressed in the initial state of B cell differentiation. RT-qPCR confirmed significant upregulation of MCM10, KIF18A, CDC45, and PLK4 in HCC tissues (p< 0.05). Conclusion This study successfully identified eight prognostic genes (MCM10, CEP55, KIF18A, ORC6, KIF23, CDC45, CDT1, and PLK4), which provided new directions for exploring the potential pathogenesis and clinical treatment research of HCC.
Collapse
Affiliation(s)
- Hang Deng
- Medical College, University of Electronic Science and Technology of China, Chengdu, China
| | - Xu Wang
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zi-Ang Jiang
- Medical College, North Sichuan Medical College, Nanchong, China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Zhou
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Gong
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang-Yu Lu
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi-Fu Hou
- Department of Organ Translation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Laragione T, Harris C, Gulko PS. Huntingtin-Interacting Protein 1-Related (HIP1R) Regulates Rheumatoid Arthritis Synovial Fibroblast Invasiveness. Cells 2025; 14:483. [PMID: 40214437 PMCID: PMC11987873 DOI: 10.3390/cells14070483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Huntingtin-interacting protein 1-related (HIP1R) shares some function similarities with HIP1, and HIP1 regulates arthritis and RA fibroblast-like synoviocytes (FLS) invasiveness. Therefore, we hypothesized that HIP1R might be involved in the regulation of FLS phenotypes and molecular processes relevant to RA. siRNA was used to knockdown HIP1R, HIP1 or control in RA FLS, followed by cell studies for invasion in Matrigel, migration, proliferation, and adhesion. RNA was sequenced and analyzed. HIP1R knockdown significantly reduced RA FLS invasiveness and migration (p < 0.05). The DEGs in siRNA HIP1R had an enrichment for GO processes "astrocyte and glial cell projection", "small GTPase signaling", and "PDGFR signaling". The most significantly DEGs had decreased expression in siRNA HIP1R and included AKT1S1, GABBR2, GPR56, and TXNDC12. siRNA HIP1 RA FLS had an enrichment for the "Rap1 signaling pathway" and "Growth factor receptor binding". The most significantly DEGs in HIP1 siRNA included FGF2, PGF, and SLC39A8. HIP1R and HIP1 DEG lists had a greater than expected number of similar genes (p = 0.0015), suggesting that, despite the major differences detected, both have partially overlapping functions in RA FLS. The most significantly DEGs in both HIP1R and HIP1 analyses are involved in cancer cell behaviors and outcomes. HIP1R is a new gene implicated in RA FLS invasiveness and migration, and regulates unique pathways and cell processes relevant to both RA as well as cancer biology. Our study provides new insight into processes implicated in FLS invasiveness, which is relevant for joint damage in RA, and identify new potential gene targets for FLS-specific treatments.
Collapse
Affiliation(s)
| | | | - Percio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.L.); (C.H.)
| |
Collapse
|
3
|
Farrokhi Yekta R, Rezaei Tavirani M, Arefi Oskouie A, Amiri-Dashatan N. Biomarker Panels Associated with Diagnosis and Overall Survival in Hepatocellular Carcinoma Revealed from Protein-Protein and mRNA-miRNA Interaction Networks. Asian Pac J Cancer Prev 2025; 26:249-262. [PMID: 39874008 DOI: 10.31557/apjcp.2025.26.1.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), the most common form of liver cancer, has a significant mortality rate, largely due to late diagnosis. Recent advances in medical research have demonstrated the potential of biomarkers for early detection. Moreover, the discovery and use of prognostic biomarkers offer a ray of hope in the fight against liver cancer. METHODS Three gene transcript collections (GSE57957, GSE76427, and GSE84402) were retrieved from the GEO database, and significantly expressed genes were identified through a comprehensive screening process. Subsequently, key potential biomarkers were identified using various methods, including functional pathway enrichment, protein-protein interaction network analysis, mRNA-miR interaction study, and ROC curve and survival analysis. RESULTS After analyzing the expression of hub proteins and miRs, 12 proteins were found to have AUC values greater than 0.9 and log-rank KM-plot p values less than 0.05. Therefore, these proteins can be considered as potential diagnostic and prognostic biomarkers. Among these proteins, the top 5 were CDC6, PTTG1, CDCA5, RACGAP1, and RAD51AP1. The microRNAs with the highest diagnostic significance (AUC≥0.8) were hsa-mir-101-3p, hsa-mir-195-5p, hsa-mir-130a-3p, hsa-mir-26b-5p, hsa-mir-29c-3p, hsa-mir-26a-5p, and hsa-mir-34a-5p. Notably, hsa-mir-34a-5p, hsa-mir-195-5p, and hsa-mir-130a-3p also showed prognostic potential as predictors of overall survival in HCC patients. CONCLUSION Harnessing the potential of these biomarkers will enable healthcare professionals to make informed decisions, leading to improved care and more favorable outcomes in the fight against HCC. However, the next step is to thoroughly validate these potential markers in large cohorts.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Arefi Oskouie
- Department of Basic Sciences, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Tao R, Wang D, Pei W, Liu Y, Liu P, Li R, Xu J, Ye J, Zhao D. Highly Sensitive and Specific Panels of Plasma Exosomal microRNAs for Identification of Malignant Pulmonary Nodules. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70034. [PMID: 39548655 PMCID: PMC11567941 DOI: 10.1111/crj.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/25/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVES With wide application of computed tomography (CT) in early lung cancer screening, solitary pulmonary nodules (SPNs) are frequently detected. Due to their high etiological diversity and potential for malignancy, rapid and accurate identification and malignant SPNs are crucial in the clinical management. In the present study, plasma exosomal microRNAs were identified and evaluated as sensitive and specific indicators for malignant SPNs. MATERIALS AND METHODS Exosomal miRNAs isolated from the plasmas of pathologically confirmed patients with SPN (four malignant and four benign, designated as the screening set) were subjected for high throughput sequencing and eight candidate miRNAs were selected. The pre-operation plasma levels of the candidate miRNAs in 77 patients with SPN (48 malignant and 29 benign, designated as the identification set) were detected by quantitative PCR, five miRNAs were identified as potential biomarkers for malignant SPNs, and the diagnostic values of the five miRNAs each alone or combined were then analyzed by AUROC analysis. The prediction values of the identified miRNAs were further evaluated in 95 patients with SPN (double blind, 74 malignant and 21 benign, designated as the validation set). RESULTS High-throughput sequencing identified 45 miRNAs with statistical differences between benign and malignant SPNs. Among the eight candidate miRNAs in the identification set, miR-1-3p alone had the best diagnostic value, with the sensitivities and specificities of 89.6% and 100% for malignant SPNs. Unexpectedly, when miR-1-3p was combined with miR-99a-5p, both the sensitivity and specificity reached 100% for malignant SPNs. miR-1-3p+miR-125b-5p and miR-1-3p+miR-218-5p were also good indicators of malignant SPNs with sensitivities of 95.8% and 97.9%, specificities of 100% and 96.6%. Further analysis of these microRNA combinations in the validation set indicated that the PPV were 91.4%, 97.4%, and 93.5% and the NPV were 100%, 100%, and 88.9% for miR-1-3p+miR-99a-5p, miR-1-3p+miR-218-5p, and miR-1-3p+miR-125b-5p, with the sensitivities were 100%, 100%, and 97.3% and the specificities were 66.7%, 90.5%, and 76.2% for miR-1-3p+miR-99a-5p, miR-1-3p+miR-218-5p, and miR-1-3p+miR-125b-5p, respectively. CONCLUSIONS Through high throughput sequencing, qPCR determination of plasma microRNAs and AUROC analysis, miR-1-3p combined with miR-99a-5p, miR-125b-5p, or miR-218-5p have been found to be sensitive and specific indicators of malignant SPNs in both the identification and validation sets. Our results indicate that the panels of plasma miRNAs can be used as diagnostic biomarkers for malignant SPNs.
Collapse
Affiliation(s)
- Rui Tao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui ProvinceChina
- Department of Respiratory and Critical Care Medicine, Anhui Chest HospitalThoracic Clinical College of Anhui Medical UniversityHefeiAnhui ProvinceChina
| | - Dandan Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Wenjing Pei
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Yanfei Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Pengcheng Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Renming Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Jiegou Xu
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Jing Ye
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated HospitalAnhui Medical UniversityHefeiAnhui ProvinceChina
| |
Collapse
|
5
|
Sang YH, Luo CY, Huang BT, Wu S, Shu J, Lan CG, Zhang F. Elevated origin recognition complex subunit 6 expression promotes non-small cell lung cancer cell growth. Cell Death Dis 2024; 15:700. [PMID: 39349930 PMCID: PMC11442828 DOI: 10.1038/s41419-024-07081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Exploring novel targets for non-small cell lung cancer (NSCLC) remains of utmost importance. This study focused on ORC6 (origin recognition complex subunit 6), investigating its expression and functional significance within NSCLC. Analysis of the TCGA-lung adenocarcinoma database revealed a notable increase in ORC6 expression in lung adenocarcinoma tissues, correlating with reduced overall survival, advanced disease stages, and other key clinical parameters. Additionally, in patients undergoing surgical resection of NSCLC at a local hospital, ORC6 mRNA and protein levels were elevated in NSCLC tissues while remaining low in adjacent normal tissues. Comprehensive bioinformatics analyses across various cancers suggested that ORC6 might play a significant role in crucial cellular processes, such as mitosis, DNA synthesis and repair, and cell cycle progression. Knocking down ORC6 using virus-delivered shRNA in different NSCLC cells, both primary and immortalized, resulted in a significant hindrance to cell proliferation, cell cycle progression, migration and invasion, accompanied by caspase-apoptosis activation. Similarly, employing CRISPR-sgRNA for ORC6 knockout (KO) exhibited significant anti-NSCLC cell activity. Conversely, increasing ORC6 levels using a viral construct augmented cell proliferation and migration. Silencing or knockout of ORC6 in primary NSCLC cells led to reduced expression of several key cyclins, including Cyclin A2, Cyclin B1, and Cyclin D1, whereas their levels increased in NSCLC cells overexpressing ORC6. In vivo experiments demonstrated that intratumoral injection of ORC6 shRNA adeno-associated virus markedly suppressed the growth of primary NSCLC cell xenografts. Reduced ORC6 levels, downregulated cyclins, and increased apoptosis were evident in ORC6-silenced NSCLC xenograft tissues. In summary, elevated ORC6 expression promotes NSCLC cell growth.
Collapse
Affiliation(s)
- Yong-Hua Sang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Ying Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutions, Baise, China
| | - Bing-Tao Huang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Siyang Wu
- Respiratory Intensive Care Unit, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Jian Shu
- Department of Thoracic and Cardiovascular Surgery, Taicang Affiliated Hospital of Soochow University The First People's Hospital of Taicang, Taicang, China.
| | - Chang-Gong Lan
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutions, Baise, China.
| | - Fuquan Zhang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, Nantong, China.
| |
Collapse
|
6
|
Yang WL, Zhang WF, Wang Y, Lou Y, Cai Y, Zhu J. Origin recognition complex 6 overexpression promotes growth of glioma cells. Cell Death Dis 2024; 15:485. [PMID: 38971772 PMCID: PMC11227543 DOI: 10.1038/s41419-024-06764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 07/08/2024]
Abstract
The discovery of novel oncotargets for glioma is of immense significance. We here explored the expression patterns, biological functions, and underlying mechanisms associated with ORC6 (origin recognition complex 6) in glioma. Through the bioinformatics analyses, we found a significant increase in ORC6 expression within human glioma tissues, correlating with poorer overall survival, higher tumor grade, and wild-type isocitrate dehydrogenase status. Additionally, ORC6 overexpression is detected in glioma tissues obtained from locally-treated patients and across various primary/established glioma cells. Further bioinformatics scrutiny revealed that genes co-expressed with ORC6 are enriched in multiple signaling cascades linked to cancer. In primary and immortalized (A172) glioma cells, depleting ORC6 using specific shRNA or Cas9-sgRNA knockout (KO) significantly decreased cell viability and proliferation, disrupted cell cycle progression and mobility, and triggered apoptosis. Conversely, enhancing ORC6 expression via a lentiviral construct augmented malignant behaviors in human glioma cells. ORC6 emerged as a crucial regulator for the expression of key oncogenic genes, including Cyclin A2, Cyclin B2, and DNA topoisomerase II (TOP2A), within glioma cells. Silencing or KO of ORC6 reduced the mRNA and protein levels of these genes, while overexpression of ORC6 increased their expression in primary glioma cells. Bioinformatics analyses further identified RBPJ as a potential transcription factor of ORC6. RBPJ shRNA decreased ORC6 expression in primary glioma cells, while its overexpression increased it. Additionally, significantly enhanced binding between the RBPJ protein and the proposed ORC6 promoter region was detected in glioma tissues and cells. In vivo experiments demonstrated a significant reduction in the growth of patient-derived glioma xenografts in the mouse brain subsequent to ORC6 KO. ORC6 depletion, inhibited proliferation, decreased expression of Cyclin A2/B2/TOP2A, and increased apoptosis were detected within these ORC6 KO intracranial glioma xenografts. Altogether, RBPJ-driven ORC6 overexpression promotes glioma cell growth, underscoring its significance as a promising therapeutic target.
Collapse
Affiliation(s)
- Wen-Lei Yang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Feng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Wang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yue Lou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Cai
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Liu SW, Luo JQ, Zhao LY, Ou NJ, Chao-Yang, Zhang YX, Bai HW, Sun HF, Zhang JX, Yao CC, Li P, Tian RH, Li Z, Zhu ZJ. scRNA-seq reveals that origin recognition complex subunit 6 regulates mouse spermatogonial cell proliferation and apoptosis via activation of Wnt/β-catenin signaling. Asian J Androl 2024; 26:46-56. [PMID: 37788012 PMCID: PMC10846824 DOI: 10.4103/aja202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 10/04/2023] Open
Abstract
The regulation of spermatogonial proliferation and apoptosis is of great significance for maintaining spermatogenesis. The single-cell RNA sequencing (scRNA-seq) analysis of the testis was performed to identify genes upregulated in spermatogonia. Using scRNA-seq analysis, we identified the spermatogonia upregulated gene origin recognition complex subunit 6 ( Orc6 ), which is involved in DNA replication and cell cycle regulation; its protein expression in the human and mouse testis was detected by western blot and immunofluorescence. To explore the potential function of Orc6 in spermatogonia, the C18-4 cell line was transfected with control or Orc6 siRNA. Subsequently, 5-ethynyl-2-deoxyuridine (EdU) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, flow cytometry, and western blot were used to evaluate its effects on proliferation and apoptosis. It was revealed that ORC6 could promote proliferation and inhibit apoptosis of C18-4 cells. Bulk RNA sequencing and bioinformatics analysis indicated that Orc6 was involved in the activation of wingless/integrated (Wnt)/β-catenin signaling. Western blot revealed that the expression of β-catenin protein and its phosphorylation (Ser675) were significantly decreased when silencing the expression of ORC6. Our findings indicated that Orc6 was upregulated in spermatogonia, whereby it regulated proliferation and apoptosis by activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Shi-Wei Liu
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jia-Qiang Luo
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Liang-Yu Zhao
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Ning-Jing Ou
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chao-Yang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu-Xiang Zhang
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hao-Wei Bai
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong-Fang Sun
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jian-Xiong Zhang
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen-Cheng Yao
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Peng Li
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ru-Hui Tian
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng Li
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zi-Jue Zhu
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
8
|
Dai S, Li F, Xu S, Hu J, Gao L. The important role of miR-1-3p in cancers. J Transl Med 2023; 21:769. [PMID: 37907984 PMCID: PMC10617136 DOI: 10.1186/s12967-023-04649-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is a malignant tumor that seriously threatens human life and health. At present, the main treatment methods include surgical resection, chemotherapy, radiotherapy, and immunotherapy. However, the mechanism of tumor occurrence and development is complex, and it produces resistance to some traditional treatment methods, leading to treatment failure and a high mortality rate for patients. Therefore, exploring the molecular mechanisms of tumor occurrence, development, and drug resistance is a very important task. MiRNAs are a type of non-coding small RNA that regulate a series of biological effects by binding to the 3'-UTR of the target mRNA, degrading the mRNA, or inhibiting its translation. MiR-1-3p is an important member of them, which is abnormally expressed in various tumors and closely related to the occurrence and development of tumors. This article introduces miR-1-3p from multiple aspects, including its production and regulation, role in tumor occurrence and development, clinical significance, role in drug resistance, and approaches for targeting miR-1-3p. Intended to provide readers with a comprehensive understanding of the important role of miR-1-3p in tumors.
Collapse
Affiliation(s)
- Shangming Dai
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Fengjiao Li
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuoguo Xu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Jinda Hu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Lichen Gao
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China.
| |
Collapse
|
9
|
Zhu J, Chen Q, Zeng L, Gao H, Wu T, He Y, Xu J, Pang J, Peng J, Deng Y, Han Y, Yi W. Multi-omics analysis reveals the involvement of origin recognition complex subunit 6 in tumor immune regulation and malignant progression. Front Immunol 2023; 14:1236806. [PMID: 37901236 PMCID: PMC10602784 DOI: 10.3389/fimmu.2023.1236806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background Origin recognition complex 6 (ORC6) is one of the six highly conserved subunit proteins required for DNA replication and is essential for maintaining genome stability during cell division. Recent research shows that ORC6 regulates the advancement of multiple cancers; however, it remains unclear what regulatory impact it has on the tumor immune microenvironment. Methods Unpaired Wilcoxon rank sum and signed rank tests were used to analyze the differences in the expression of ORC6 in normal tissues and corresponding tumor tissues. Multiple online databases have evaluated the genetic alterations, protein expression and localization, and clinical relevance of ORC6. To evaluate the potential prognostic impact and diagnostic significance of ORC6 expression, we carried out log-rank, univariate Cox regression, and receiver operating characteristic curve analysis. The ICGC-LIRI-JP cohort, CGGA-301 cohort, CGGA-325 cohort, CGGA-693 cohort, and GSE13041 cohort were used for external validation of the study findings. The associations between ORC6 expression and immune cell infiltration, immune checkpoint expression, and immunotherapy cohorts was further analyzed. To explore the functional and signaling pathways related to ORC6 expression, gene set enrichment analysis was performed. To clarify the expression and function of ORC6 in hepatocellular carcinoma (LIHC) and glioma, we conducted in vitro experiments. Results Expression of ORC6 is upregulated in the majority of cancer types and is associated with poor patient prognosis, notably in cases of LIHC and gliomas. In addition, ORC6 may be involved in multiple signaling pathways related to cancer progression and immune regulation. High expression of ORC6 correlates with an immunosuppressive state in the tumor microenvironment. The results of further immunotherapy cohort analysis suggested that patients in the ORC6 high-expression group benefited from immunotherapy. Inhibiting ORC6 expression suppressed the proliferative and migratory abilities of LIHC and glioma cells. Conclusion High expression of ORC6 may be used as a biomarker to predict the poor prognosis of most tumor patients. The high expression of ORC6 may be involved in the regulation of the tumor immunosuppressive environment, and it is expected to become a molecular target for inhibiting tumor progression.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Liyun Zeng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Tong Wu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Yeqing He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Jian Pang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Jing Peng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Yueqiong Deng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Yi Han
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| |
Collapse
|
10
|
Li GZ, Meng GX, Pan GQ, Zhang X, Yan LJ, Li RZ, Ding ZN, Tan SY, Wang DX, Tian BW, Yan YC, Dong ZR, Hong JG, Li T. MALAT1/ mir-1-3p mediated BRF2 expression promotes HCC progression via inhibiting the LKB1/AMPK signaling pathway. Cancer Cell Int 2023; 23:188. [PMID: 37653482 PMCID: PMC10472681 DOI: 10.1186/s12935-023-03034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been reported to play a vital role in the occurrence and development of various tumors. However, the underlying mechanism of MALAT1 in hepatocellular carcinoma (HCC) has not been thoroughly elucidated. METHODS The expression levels of MALAT1 in HCC tissues and different cell lines were detected by qRT-PCR. Antisense oligonucleotides (ASO)-MALAT1 transfected cells were used to explore the biological effects of MALAT1 in HCC cells by cell counting kit 8 (CCK-8), colony formation, transwell, wound healing, and flow cytometry analysis. Western blotting was performed to measure AMPK and apoptosis-related protein levels. Dual-luciferase reporter assay was performed to verify the relationship between MALAT1 and its specific targets. RESULTS We found that MALAT1 was upregulated in HCC, and MALAT1 knockdown in HCC cells inhibited cell proliferation, migration, and invasion and inhibited apoptosis in vitro. Further studies demonstrated that MALAT1 positively regulated the expression of transcription factor II B‑related factor 2 (BRF2), which was associated with tumor recurrence, large tumor size, and poor prognosis in HCC. Mechanistically, MALAT1 was found to act as a competitive endogenous RNA to sponge has-miR-1-3p, which upregulated BRF2 expression. Knockdown of BRF2 inhibited the progression of HCC by activating the LKB1/AMPK signaling pathway. Overexpression of BRF2 reversed the inhibitory effect of MALAT1 knockdown on HCC cell viability. Moreover, ASO targeting MALAT1 inhibited the growth of xenograft tumors. CONCLUSIONS Our results demonstrate a novel MALAT1/miR-1-3p/BRF2/LKB1/AMPK regulatory axis in HCC, which may provide new molecular therapeutic targets for HCC in the future.
Collapse
Affiliation(s)
- Guang-Zhen Li
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Guo-Qiang Pan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiao Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Rui-Zhe Li
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Si-Yu Tan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Tao Li
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| |
Collapse
|
11
|
Lin YC, Liu D, Chakraborty A, Macias V, Brister E, Sonalkar J, Shen L, Mitra J, Ha T, Kajdacsy-Balla A, Prasanth KV, Prasanth SG. DNA Damage-Induced, S-Phase Specific Phosphorylation of Orc6 is Critical for the Maintenance of Genome Stability. Mol Cell Biol 2023; 43:143-156. [PMID: 37096556 PMCID: PMC10153009 DOI: 10.1080/10985549.2023.2196204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 04/26/2023] Open
Abstract
The smallest subunit of the human Origin Recognition Complex, hOrc6, is required for DNA replication progression and plays an important role in mismatch repair (MMR) during S-phase. However, the molecular details of how hOrc6 regulates DNA replication and DNA damage response remain to be elucidated. Orc6 levels are elevated upon specific types of genotoxic stress, and it is phosphorylated at Thr229, predominantly during S-phase, in response to oxidative stress. Many repair pathways, including MMR, mediate oxidative DNA damage repair. Defects in MMR are linked to Lynch syndrome, predisposing patients to many cancers, including colorectal cancer. Orc6 levels are known to be elevated in colorectal cancers. Interestingly, tumor cells show reduced hOrc6-Thr229 phosphorylation compared to adjacent normal mucosa. Further, elevated expression of wild-type and the phospho-dead forms of Orc6 results in increased tumorigenicity, implying that in the absence of this "checkpoint" signal, cells proliferate unabated. Based on these results, we propose that DNA-damage-induced hOrc6-pThr229 phosphorylation during S-phase facilitates ATR signaling in the S-phase, halts fork progression, and enables assembly of repair factors to mediate efficient repair to prevent tumorigenesis. Our study provides novel insights into how hOrc6 regulates genome stability.
Collapse
Affiliation(s)
- Yo-Chuen Lin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dazhen Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Arindam Chakraborty
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Virgilia Macias
- Research Tissue Imaging Core, Department of Pathology, University of Illinois, Chicago, Illinois, USA
| | - Eileen Brister
- Research Tissue Imaging Core, Department of Pathology, University of Illinois, Chicago, Illinois, USA
| | - Jay Sonalkar
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Linyuan Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jaba Mitra
- Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Taekjip Ha
- Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andre Kajdacsy-Balla
- Research Tissue Imaging Core, Department of Pathology, University of Illinois, Chicago, Illinois, USA
| | - Kannanganattu V. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, UIUC, Urbana, Illinois, USA
| | - Supriya G. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, UIUC, Urbana, Illinois, USA
| |
Collapse
|
12
|
Lin Y, Zhang Y, Tuo Z, Gao L, Ding D, Bi L, Yu D, Lv Z, Wang J, Chen X. ORC6, a novel prognostic biomarker, correlates with T regulatory cell infiltration in prostate adenocarcinoma: a pan-cancer analysis. BMC Cancer 2023; 23:285. [PMID: 36978046 PMCID: PMC10053432 DOI: 10.1186/s12885-023-10763-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The origin recognition complex (ORC), a six-subunit DNA-binding complex, participates in DNA replication in cancer cells. Specifically in prostate cancers, ORC participates the androgen receptor (AR) regulated genomic amplification and tumor proliferation throughout the entire cell cycle. Of note, ORC6, the smallest subunit of ORC, has been reported to be dysregulated in some types of cancers (including prostate cancer), however, its prognostic and immunological significances remain yet to be elucidated. METHODS In the current study, we comprehensively investigated the potential prognostic and immunological role of ORC6 in 33 human tumors using multiple databases, such as TCGA, Genotype-Tissue Expression, CCLE, UCSC Xena, cBioPortal, Human Protein Atlas, GeneCards, STRING, MSigDB, TISIDB, and TIMER2 databases. RESULTS ORC6 expression was significantly upregulated in 29 types of cancers compared to the corresponding normal adjacent tissues. ORC6 overexpression correlated with higher stage and worse prognostic outcomes in most cancer types analyzed. Additionally, ORC6 was involved in the cell cycle pathway, DNA replication, and mismatch repair pathways in most tumor types. A negative correlation was observed between the tumor endothelial cell infiltration and ORC6 expression in almost all tumors, whereas the immune infiltration of T regulatory cell was noted to be statistically positively correlated with the expression of ORC6 in prostate cancer tissues. Furthermore, in most tumor types, immunosuppression-related genes, especially TGFBR1 and PD-L1 (CD274), exhibited a specific correlation with the expression of ORC6. CONCLUSIONS This comprehensive pan-cancer analysis revealed that ORC6 expression serves as a prognostic biomarker and that ORC6 is involved in the regulation of various biological pathways, the tumor microenvironment, and the immunosuppression status in several human cancers, suggesting its potential diagnostic, prognostic, and therapeutic value in pan-cancer, especially in prostate adenocarcinoma.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Gao
- Center for Clinical Medicine, Huatuo Institute of Medical Innovation (HTIMI), Berlin, Germany
| | - Demao Ding
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhengmei Lv
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui, China
| | - Jiani Wang
- School of Health Administration, Anhui Medical University, Hefei, China
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Institute for Social Medicine, Epidemiology and Health Economics, Berlin, Germany
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
13
|
Identification of Recurrent Chromosome Breaks Underlying Structural Rearrangements in Mammary Cancer Cell Lines. Genes (Basel) 2022; 13:genes13071228. [PMID: 35886011 PMCID: PMC9319013 DOI: 10.3390/genes13071228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer genomes are characterized by the accumulation of small-scale somatic mutations as well as large-scale chromosomal deletions, amplifications, and complex structural rearrangements. This characteristic is at least partially dependent on the ability of cancer cells to undergo recurrent chromosome breakage. In order to address the extent to which chromosomal structural rearrangement breakpoints correlate with recurrent DNA double-strand breaks (DSBs), we simultaneously mapped chromosome structural variation breakpoints (using whole-genome DNA-seq) and spontaneous DSB formation (using Break-seq) in the estrogen receptor (ER)-positive breast cancer cell line MCF-7 and a non-cancer control breast epithelium cell line MCF-10A. We identified concurrent DSBs and structural variation breakpoints almost exclusively in the pericentromeric region of chromosome 16q in MCF-7 cells. We fine-tuned the identification of copy number variation breakpoints on 16q. In addition, we detected recurrent DSBs that occurred in both MCF-7 and MCF-10A. We propose a model for DSB-driven chromosome rearrangements that lead to the translocation of 16q, likely with 10q, and the eventual 16q loss that does not involve the pericentromere of 16q. We present evidence from RNA-seq data that select genes, including SHCBP1, ORC6, and MYLK3, which are immediately downstream from the 16q pericentromere, show heightened expression in MCF-7 cell line compared to the control. Data published by The Cancer Genome Atlas show that all three genes have increased expression in breast tumor samples. We found that SHCBP1 and ORC6 are both strong poor prognosis and treatment outcome markers in the ER-positive breast cancer cohort. We suggest that these genes are potential oncogenes for breast cancer progression. The search for tumor suppressor loss that accompanies the 16q loss ought to be augmented by the identification of potential oncogenes that gained expression during chromosomal rearrangements.
Collapse
|
14
|
Wang J, Wang C, Yang L, Li K. Identification of the critical genes and miRNAs in hepatocellular carcinoma by integrated bioinformatics analysis. Med Oncol 2022; 39:21. [PMID: 34982264 DOI: 10.1007/s12032-021-01622-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a global health problem with complex etiology and pathogenesis. Microarray data are increasingly being used as a novel and effective method for cancer pathogenesis analysis. An integrative analysis of genes and miRNA for HCC was conducted to unravel the potential prognosis of HCC. Two gene microarray datasets (GSE89377 and GSE101685) and two miRNA expression profiles (GSE112264 and GSE113740) were obtained from Gene Expression Omnibus database. A total of 177 differently expressed genes (DEGs) and 80 differently expressed miRNAs (DEMs) were screened out. Functional enrichment of DEGs was proceeded by Clue GO and these genes were significantly enriched in the chemical carcinogenesis pathway. A protein-protein interaction network was then established on the STRING platform, and ten hub genes (CDC20, TOP2A, ASPM, NCAPG, AURKA, CYP2E1, HMMR, PRC1, TYMS, and CYP4A11) were visualized via Cytoscape software. Then, a miRNA-target network was established to identify the hub dysregulated miRNA. A key miRNA (hsa-miR-124-3p) was filtered. Finally, the miRNA-target-transcription factor network was constructed for hsa-miR-124-3p. The network for hsa-miR-124-3p included two transcription factors (TFs) and five targets. These identified DEGs and DEMs, TFs, targets, and regulatory networks may help advance our understanding of the underlying pathogenesis of HCC.
Collapse
Affiliation(s)
- Jun Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China.
| | - Chuyan Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| | - Liuqing Yang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| | - Kexin Li
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| |
Collapse
|