1
|
Rafalska KT, Orzołek A, Ner-Kluza J, Wysocki P. Does the Type of Semen Affect the Phosphoproteome of Turkey ( Meleagris gallopavo) Spermatozoa? Int J Mol Sci 2025; 26:3467. [PMID: 40331949 PMCID: PMC12027420 DOI: 10.3390/ijms26083467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Yellow semen syndrome (YSS) is an increasingly common reproductive health problem in male turkeys. This condition is characterised by a yellow discolouration of semen, often linked to decreased semen quality and fertility. Yellow semen syndrome poses a significant concern due to its negative impact on the reproductive performance of turkeys. Phosphorylation is one of the major post-translational modifications of proteins. A better understanding of the function of the sperm phosphoproteome is crucial for the advancement of reproductive biology and the development of therapies for male infertility. Spermatozoa from semen samples with YSS were characterised by lower levels of malondialdehyde (MDA), reduced plasma membrane integrity (PMI), and decreased mitochondrial membrane potential (MMP). However, these samples showed increased antioxidant enzyme activity and an elevated glutathione (GSH) content. Yellow sperm also had a lower percentage of viable cells and a higher proportion of apoptotic and necrotic cells. The phosphoproteins identified in turkey sperm play key roles in sperm maturation, the development of a functional motility apparatus, efficient cellular metabolism, protection against oxidative stress, and successful fertilisation of an egg. Yellow semen syndrome altered the phosphorylation of turkey sperm proteins on serine, threonine (p ≤ 0.05), and tyrosine residues, which could have influenced the metabolism and physiology of spermatozoa in yellow semen samples, thus affecting their reproductive potential. These findings highlight the impact of YSS on sperm function, including phosphorylation-dependent processes that are crucial for reproduction.
Collapse
Affiliation(s)
- Katarzyna T. Rafalska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland; (K.T.R.); (P.W.)
| | - Aleksandra Orzołek
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland; (K.T.R.); (P.W.)
| | - Joanna Ner-Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University, Mickiewicza 30, 30-059 Cracow, Poland;
| | - Paweł Wysocki
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland; (K.T.R.); (P.W.)
| |
Collapse
|
2
|
Xu H, Guo J, Huang Y, Zhang M, Wang Y, Xia L, Cheng X, Meng T, Hao R, Wei X, Li C, Zhang P, Xu Y. Insights into the role of hnRNPK in spermatogenesis via the piRNA pathway. Sci Rep 2025; 15:6438. [PMID: 39987352 PMCID: PMC11846892 DOI: 10.1038/s41598-025-91081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
Deletion of hnRNPK in mouse spermatogonia leads to male sterility due to arrest permatogenesis, yet the underlying molecular mechanisms remain elusive. This study investigated the testicular proteome on postnatal day 28 (P28) to elucidate the infertility associated with Hnrnpk deficiency, identifying 791 proteins with altered expression: 256 were upregulated, and 535 were downregulated. Pathway enrichment analysis demonstrated that the downregulated proteins are primarily involved in spermatogenesis, fertilization, and piRNA metabolic processes. In Hnrnpk cKO mice, key proteins essential for piRNA metabolism, such as PIWIL1, TDRD7, DDX4, and MAEL, exhibited reduced expression, resulting in impaired piRNA production. Mechanistic studies employing RNA immunoprecipitation (RIP), dual-luciferase reporter assays, and fluorescence in situ hybridization/immunofluorescence (FISH/IF) assays demonstrated that hnRNPK directly interacts with the 3'UTR of piRNA pathway transcripts, enhancing their translational efficiency. These results establish that Hnrnpk deficiency disrupts the piRNA pathway by diminishing the expression of essential regulatory proteins, thereby impairing piRNA production and spermatogenesis. Our findings elucidate a novel molecular basis for infertility linked to hnRNPK dysfunction and advance understanding of post-transcriptional regulation in male germ cell development.
Collapse
Affiliation(s)
- Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Jiahua Guo
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Yueru Huang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Mengjia Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Yuxi Wang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Lianren Xia
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Tiantian Meng
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Ruijie Hao
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Xuefeng Wei
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China.
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China.
| | - Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|
3
|
Nisa FU, Naqvi RZ, Arshad F, Ilyas I, Asif M, Amin I, Mrode R, Mansoor S, Mukhtar Z. Assessment of Genomic Diversity and Selective Pressures in Crossbred Dairy Cattle of Pakistan. Biochem Genet 2024; 62:4137-4156. [PMID: 38664326 DOI: 10.1007/s10528-024-10809-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/08/2024] [Indexed: 09/28/2024]
Abstract
Improving the low productivity levels of native cattle breeds in smallholder farming systems is a pressing concern in Pakistan. Crossbreeding high milk-yielding holstein friesian (HF) breed with the adaptability and heat tolerance of Sahiwal cattle has resulted in offspring that are well-suited to local conditions and exhibit improved milk yield. The exploration of how desirable traits in crossbred dairy cattle are selected has not yet been investigated. This study aims to provide the first overview of the selective pressures on the genome of crossbred dairy cattle in Pakistan. A total of eighty-one crossbred, thirty-two HF and twenty-four Sahiwal cattle were genotyped, and additional SNP genotype data for HF and Sahiwal were collected from a public database to equate the sample size in each group. Within-breed selection signatures in crossbreds were investigated using the integrated haplotype score. Crossbreds were also compared to each of their parental breeds to discover between-population signatures of selection using two approaches: cross-population extended haplotype homozygosity and fixation index. We identified several overlapping genes associated with production, immunity, and adaptation traits, including U6, TMEM41B, B4GALT7, 5S_rRNA, RBM27, POU4F3, NSD1, PRELID1, RGS14, SLC34A1, TMED9, B4GALT7, OR2AK3, OR2T16, OR2T60, OR2L3, and CTNNA1. Our results suggest that regions responsible for milk traits have generally experienced stronger selective pressure than others.
Collapse
Affiliation(s)
- Fakhar Un Nisa
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Fazeela Arshad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Iram Ilyas
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Raphael Mrode
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, UK
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
- International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan.
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan.
| |
Collapse
|
4
|
Kumaresan A, Yadav P, Sinha MK, Nag P, John Peter ESK, Mishra JS, Kumar S. Male infertility and perfluoroalkyl and poly-fluoroalkyl substances: evidence for alterations in phosphorylation of proteins and fertility-related functional attributes in bull spermatozoa†. Biol Reprod 2024; 111:723-739. [PMID: 38847481 PMCID: PMC11402523 DOI: 10.1093/biolre/ioae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) are pervasive environmental pollutants and potential threats to reproductive health. Epidemiological studies have established an association between PFAS and male infertility, but the underlying mechanisms are unclear. OBJECTIVES Investigate the effect of perfluorooctane sulfonic acid (PFOS), the most prevalent and representative PFAS, on bull sperm protein phosphorylation and function. METHODS We exposed bull sperm to PFOS at 10 (average population exposure) and 100 μM (high-exposure scenario), and analyzed global proteomic and phosphoproteomic analysis by TMT labeling and Nano LC-MS/MS. We also measured sperm fertility functions by flow cytometry. RESULTS PFOS at 10-μM altered sperm proteins linked to spermatogenesis and chromatin condensation, while at 100 μM, PFOS affected proteins associated with motility and fertility. We detected 299 phosphopeptides from 116 proteins, with 45 exhibiting differential expression between control and PFOS groups. PFOS dysregulated phosphorylation of key proteins (ACRBP, PRKAR2A, RAB2B, SPAG8, TUBB4B, ZPBP, and C2CD6) involved in sperm capacitation, acrosome reaction, sperm-egg interaction, and fertilization. PFOS also affected phosphorylation of other proteins (AQP7, HSBP9, IL4I1, PRKAR1A, and CCT8L2) related to sperm stress resistance and cryotolerance. Notably, four proteins (PRM1, ACRBP, TSSK1B, and CFAP45) exhibited differential regulation at both proteomic and phosphoproteomic levels. Flow cytometric analysis confirmed that PFOS increased protein phosphorylation in sperm and also decreased sperm motility, viability, calcium, and mitochondrial membrane potential and increased mitochondrial ROS in a dose-dependent manner. CONCLUSIONS This study demonstrates that PFOS exposure negatively affects phosphorylation of proteins vital for bull sperm function and fertilization.
Collapse
Affiliation(s)
- Arumugam Kumaresan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Pradeep Nag
- Department of Animal Sciences, University of Missouri, Columbia, WI 65211, USA
| | - Ebenezer Samuel King John Peter
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
5
|
Parrilla I, Cambra JM, Cuello C, Rodriguez-Martinez H, Gil MA, Martinez EA. Cryopreservation of highly extended pig spermatozoa remodels its proteome and counteracts polyspermic fertilization in vitro. Andrology 2024; 12:1356-1372. [PMID: 38131448 DOI: 10.1111/andr.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Currently, high polyspermy remains a significant obstacle to achieving optimal efficiency in in vitro fertilization (IVF) and in vitro embryo production (IVP) systems in pigs. Developing strategies that would prevent polyspermy is essential in overcoming this challenge and maximizing the potential of this reproductive biotechnology. Previous results have demonstrated that using boar spermatozoa subjected to a high-extension and reconcentration procedure and then cryopreserved resulted in significant improvements in IVF/IVP systems with high rates of monospermy and penetration. OBJECTIVE The aim of the present study was to unveil the molecular mechanisms that may underlie the changes in fertilization patterns exhibited by highly extended and cryopreserved boar spermatozoa. MATERIALS AND METHODS To achieve this goal, we used quantitative proteomic analysis (LC‒ESI‒MS/MS SWATH) to identify differentially abundant proteins (DAPs) between highly extended (HE) and conventionally (control; CT) cryopreserved boar spermatozoa. Prior to the analysis, we evaluated the in vitro post-thawing fertilizing ability of the sperm samples. The results demonstrated a remarkable improvement in monospermy and IVF efficiency when using HE spermatozoa in IVF compared with CT spermatozoa. RESULTS At the proteomic level, the combination of high-extension and cryopreservation had a significant impact on the frozen-thawed sperm proteome. A total of 45 proteins (24 downregulated and 21 upregulated) were identified as DAPs (FC > 1 or ≤1; p < 0.05) when compared with CT spermatozoa. Some of these proteins were primarily linked to metabolic processes and the structural composition of sperm cells. The dysregulation of these proteins may have a direct or indirect effect on essential sperm functions and significantly affect spermatozoa-oocyte interaction and, therefore, the sperm fertilization profile under in vitro conditions. While these findings are promising, further research is necessary to comprehend how the disturbance of specific proteins affects sperm fertilization ability.
Collapse
Affiliation(s)
- Inmaculada Parrilla
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Technical University of Munich, Munich, Germany
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Linköping University, Linköping, Sweden
| | - Maria A Gil
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
6
|
Ren H, Wen X, He Q, Yi M, Dugarjaviin M, Bou G. Comparative Study on the Sperm Proteomes of Horses and Donkeys. Animals (Basel) 2024; 14:2237. [PMID: 39123763 PMCID: PMC11311092 DOI: 10.3390/ani14152237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The reproductive performance of horse sperm and donkey sperm has been reported to differ. Sperm proteins play a crucial role in sperm viability and fertility. Although differences between species are known, no prior study has investigated disparities in the sperm proteome between horses and donkeys. Therefore, this study characterized and compared the sperm proteomes of horses and donkeys using 4D-DIA mass spectrometry technology. We identified 3436 proteins in horse sperm and 3404 proteins in donkey sperm. Of these, 3363 proteins were expressed in both horse and donkey sperm, with 73 proteins being specifically expressed in horse sperm, and 41 in donkey sperm. According to data analysis, donkeys exhibited a greater percentage of motility and progressive movement in straight-line sperm than horses, as well as lower percentages of static and slow sperm than horses. Joint analysis of the results from the horse and donkey sperm proteomes and their CEROS II-read parameters demonstrated a possible association between sperm proteins and their sperm viability patterns. These findings suggest that there are discrepancies in the expression levels and protein compositions of horse and donkey sperm and that certain specific proteins may be responsible for the differences in performance between these two species.
Collapse
Affiliation(s)
- Hong Ren
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xin Wen
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qianqian He
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Minna Yi
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
7
|
Wang K, Jiao H, Cheng X, Zhang L, Zhang S, Liu G, Meng F, Zhan F, Yang F. Proteomic Analysis of Differences in the Freezability of Porcine Sperm Identifies α-Amylase As a Key Protein. J Proteome Res 2024; 23:2641-2650. [PMID: 38906844 DOI: 10.1021/acs.jproteome.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
To investigate the mechanisms underlying the differences in the freezability of boar semen, Yorkshire boars with freezing-tolerant semen (YT, n = 3), Yorkshire boars with freezing-sensitive semen (YS, n = 3), Landrace boars with freezing-tolerant semen (LT, n = 3), and Landrace boars with freezing-sensitive semen (LS, n = 3) were selected for this study. Their sperm was subjected to protein extraction, followed by data-independent acquisition proteomics and functional bioinformatics analysis. A total of 3042 proteins were identified, of which 2810 were quantified. Some key KEGG pathways were enriched, such as starch and sucrose metabolism, carbohydrate digestion and absorption, mineral absorption, the HIF-1 signaling pathway, and the necroptosis pathways. Through PRM verification, we found that several proteins, such as α-amylase and epididymal sperm-binding protein 1, can be used as molecular markers of the freezing resistance of boar semen. Furthermore, we found that the addition of α-amylase to cryoprotective extender could significantly improve the post-thaw motility and quality of boar semen. In summary, this study revealed some molecular markers and potential molecular pathways contributing to the high or low freezability of boar sperm, identifying α-amylase as a key protein. This study is valuable for optimizing boar semen cryopreservation technology.
Collapse
Affiliation(s)
- Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hang Jiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinrui Cheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lige Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Songyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Gang Liu
- National Animal Husbandry Station, Beijing 100193, China
| | - Fei Meng
- National Animal Husbandry Station, Beijing 100193, China
| | - Fengting Zhan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
8
|
Peña FJ, Martín-Cano FE, Becerro-Rey L, Ortega-Ferrusola C, Gaitskell-Phillips G, da Silva-Álvarez E, Gil MC. Proteomics is advancing the understanding of stallion sperm biology. Proteomics 2024; 24:e2300522. [PMID: 38807556 DOI: 10.1002/pmic.202300522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
The mammalian ejaculate is very well suited to proteomics studies. As such, research concerning sperm proteomics is offering a huge amount of new information on the biology of spermatozoa. Among domestic animals, horses represent a species of special interest, in which reproductive technologies and a sizeable market of genetic material have grown exponentially in the last decade. Studies using proteomic approaches have been conducted in recent years, showing that proteomics is a potent tool to dig into the biology of the stallion spermatozoa. The aim of this review is to present an overview of the research conducted, and how these studies have improved our knowledge of stallion sperm biology. The main outcomes of the research conducted so far have been an improved knowledge of metabolism, and its importance in sperm functions, the impact of different technologies on the sperm proteome, and the identification of potential biomarkers. Moreover, proteomics of seminal plasma and phosphoproteomics are identified as areas of major interest.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Francisco Eduardo Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Eva da Silva-Álvarez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
9
|
Ye J, Yan X, Zhang W, Lu J, Xu S, Li X, Qin P, Gong X, Liu Y, Ling Y, Li Y, Zhang Y, Fang F. Integrative proteomic and phosphoproteomic analysis in the female goat hypothalamus to study the onset of puberty. BMC Genomics 2023; 24:621. [PMID: 37853328 PMCID: PMC10583467 DOI: 10.1186/s12864-023-09705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Puberty marks the end of childhood and achieve sexual maturation and fertility. The role of hypothalamic proteins in regulating puberty onset is unclear. We performed a comprehensive differential proteomics and phosphoproteomics analysis in prepubertal and pubertal goats to determine the roles of hypothalamic proteins and phosphoproteins during the onset of puberty. RESULTS We used peptide and posttranslational modifications peptide quantification and statistical analyses, and identified 69 differentially expressed proteins from 5,057 proteins and 576 differentially expressed phosphopeptides from 1574 phosphorylated proteins. Combined proteomic and phosphoproteomics, 759 correlated proteins were identified, of which 5 were differentially expressed only at the protein level, and 201 were only differentially expressed at the phosphoprotein level. Pathway enrichment analyses revealed that the majority of correlated proteins were associated with glycolysis/gluconeogenesis, Fc gamma R-mediated phagocytosis, focal adhesion, GABAergic synapse, and Rap1 signaling pathway. These pathways are related to cell proliferation, neurocyte migration, and promoting the release of gonadotropin-releasing hormone in the hypothalamus. CTNNB1 occupied important locations in the protein-protein interaction network and is involved in focal adhesion. CONCLUSION The results demonstrate that the proteins differentially expression only at the protein level or only differentially expressed at the phosphoprotein level and their related signalling pathways are crucial in regulating puberty in goats. These differentially expressed proteins and phosphorylated proteins may constitute the proteomic backgrounds between the two different stages.
Collapse
Affiliation(s)
- Jing Ye
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Xu Yan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Wei Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
| | - Juntai Lu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
| | - Shuangshuang Xu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
| | - Xiaoqian Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
| | - Ping Qin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Xinbao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yinghui Ling
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yunsheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Fugui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China.
| |
Collapse
|
10
|
Greither T, Dejung M, Behre HM, Butter F, Herlyn H. The human sperm proteome-Toward a panel for male fertility testing. Andrology 2023; 11:1418-1436. [PMID: 36896575 DOI: 10.1111/andr.13431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Although male factor accounts for 40%-50% of unintended childlessness, we are far from fully understanding the detailed causes. Usually, affected men cannot even be provided with a molecular diagnosis. OBJECTIVES We aimed at a higher resolution of the human sperm proteome for better understanding of the molecular causes of male infertility. We were particularly interested in why reduced sperm count decreases fertility despite many normal-looking spermatozoa and which proteins might be involved. MATERIAL AND METHODS Applying mass spectrometry analysis, we qualitatively and quantitatively examined the proteomic profiles of spermatozoa from 76 men differing in fertility. Infertile men had abnormal semen parameters and were involuntarily childless. Fertile subjects exhibited normozoospermia and had fathered children without medical assistance. RESULTS We discovered proteins from about 7000 coding genes in the human sperm proteome. These were mainly known for involvements in cellular motility, response to stimuli, adhesion, and reproduction. Numbers of sperm proteins showing at least threefold deviating abundances increased from oligozoospermia (N = 153) and oligoasthenozoospermia (N = 154) to oligoasthenoteratozoospermia (N = 368). Deregulated sperm proteins primarily engaged in flagellar assembly and sperm motility, fertilization, and male gametogenesis. Most of these participated in a larger network of male infertility genes and proteins. DISCUSSION We expose 31 sperm proteins displaying deviant abundances under infertility, which already were known before to have fertility relevance, including ACTL9, CCIN, CFAP47, CFAP65, CFAP251 (WDR66), DNAH1, and SPEM1. We propose 18 additional sperm proteins with at least eightfold differential abundance for further testing of their diagnostic potential, such as C2orf16, CYLC1, SPATA31E1, SPATA31D1, SPATA48, EFHB (CFAP21), and FAM161A. CONCLUSION Our results shed light on the molecular background of the dysfunctionality of the fewer spermatozoa produced in oligozoospermia and syndromes including it. The male infertility network presented may prove useful in further elucidating the molecular mechanism of male infertility.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Falk Butter
- Department of Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Li X, Li L, Cui Z, Li M, Xu W. Phosphoproteomics Reveal New Candidates in Abnormal Spermatogenesis of Pseudomales in Cynoglossus semilaevis. Int J Mol Sci 2023; 24:11430. [PMID: 37511189 PMCID: PMC10380018 DOI: 10.3390/ijms241411430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Phosphorylation is a post-translational modification that contributes to versatile protein functions in spermatogenesis, and the variations they generate usually results in abnormal spermatogenesis or sperm dysfunction. The sex-reversal phenomenon exists in Chinese tongue sole under certain conditions such that individuals with a ZW genotype can acquire a male phenotype and are thus called pseudomales. Pseudomale tongue sole can reach sexual maturity but produce only Z-type sperm, and the Z sperm carries paternal epigenetic information. Whether phosphorylation plays a role in the sperm abnormality of pseudomales is unknown. In this study, a phosphoproteomic analysis was performed to compare protein phosphorylation profiles between pseudomale and male testes. Altogether, we identified 14,253 phosphopeptides matching with 4843 proteins, with 1329 differentially phosphorylated peptides corresponding to 1045 differentially phosphorylated proteins (DPPs). Phosphorylation at 781 sites was upregulated and at 548 sites was downregulated. Four motifs were identified among differentially phosphorylated peptides, which were "SP", "SD", "RxxS", and "TP". Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that the cell cycle and DNA/RNA processing were significantly enriched with the genes encoding DPPs. To analyze DPP function in depth, a protein-protein interaction network was constructed, and Ran-binding protein 2 was found to play a central role in spermatogenesis by regulating several processes such as the cell cycle, eukaryotic translation, ubiquitination, and minichromosome maintenance. In kinase-associated network analyses, two "mitogen-activated protein kinase (Mapk)-centered" clusters were identified that may account for abnormal spermatogenesis in pseudomales. One cluster was centered on Mapk6, which predominantly regulated the cell cycle by interacting with several cyclin-dependent kinases, and the other was centered on the "testis-expressed kinase 1-like (Tesk1l)/Pim1l-Mapk4l- testis-expressed 14 (Tex14)" kinase cascade, which might contribute to spermatogenesis by regulating β-catenin. Taken together, these data suggested the new candidates involved in pseudomale sperm abnormalities and provided clues to discover the phosphorylated regulatory mechanism underlying tongue sole spermatogenesis.
Collapse
Affiliation(s)
- Xihong Li
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Lu Li
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhongkai Cui
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Ming Li
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Wenteng Xu
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| |
Collapse
|
12
|
Zheng Y, Mao B, Wang Q, Duan X, Chen MY, Shen W, Li C, Wang YF. Quantitative proteomics and phosphoproteomics reveal insights into mechanisms of ocnus function in Drosophila testis development. BMC Genomics 2023; 24:283. [PMID: 37237333 DOI: 10.1186/s12864-023-09386-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Testis is the only organ supporting sperm production and with the largest number of proteins and tissue-specific proteins in animals. In our previous studies, we have found that knockdown of ocnus (ocn), a testis-specific gene, resulted in much smaller testis with no germ cells in Drosophila melanogaster. However, the molecular consequences of ocn knockdown in fly testes are unknown. RESULTS In this study, through iTRAQ quantitative proteomics sequencing, 606 proteins were identified from fly abdomens as having a significant and at least a 1.5-fold change in expression after ocn knockdown in fly testes, of which 85 were up-regulated and 521 were down-regulated. Among the differential expressed proteins (DEPs), apart from those proteins involved in spermatogenesis, the others extensively affected biological processes of generation of precursor metabolites and energy, metabolic process, and mitochondrial transport. Protein-protein interaction (PPI) analyses of DEPs showed that several kinases and/or phosphatases interacted with Ocn. Re-analyses of the transcriptome revealed 150 differential expressed genes (DEGs) appeared in the DEPs, and their changing trends in expressions after ocn knockdown were consistent. Many common down-regulated DEGs and DEPs were testis-specific or highly expressed in the testis of D. melanogaster. Quantitative RT-PCR (qRT-PCR) confirmed 12 genes appeared in both DEGs and DEPs were significantly down-regulated after ocn knockdown in fly testes. Furthermore, 153 differentially expressed phosphoproteins (DEPPs), including 72 up-regulated and 94 down-regulated phosphorylated proteins were also identified (13 phosphoproteins appeared in both up- and down-regulated groups due to having multiple phosphorylation sites). In addition to those DEPPs associated with spermatogenesis, the other DEPPs were enriched in actin filament-based process, protein folding, and mesoderm development. Some DEPs and DEPPs were involved in Notch, JAK/STAT, and cell death pathways. CONCLUSIONS Given the drastic effect of the ocn knockdown on tissue development and testis cells composition, the differences in protein abundance in the ocn knockdown flies might not necessarily be the direct result of differential gene regulation due to the inactivation of ocn. Nevertheless, our results suggest that the expression of ocn is essential for Drosophila testis development and that its down-regulation disturbs key signaling pathways related to cell survival and differentiation. These DEPs and DEPPs identified may provide significant candidate set for future studies on the mechanism of male reproduction of animals, including humans.
Collapse
Affiliation(s)
- Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Bin Mao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Qian Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xin Duan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wei Shen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Chao Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China.
| |
Collapse
|
13
|
Abu-Halima M, Becker LS, Al Smadi MA, Abdul-Khaliq H, Raeschle M, Meese E. Sperm Motility Annotated Genes: Are They Associated with Impaired Fecundity? Cells 2023; 12:cells12091239. [PMID: 37174638 PMCID: PMC10177407 DOI: 10.3390/cells12091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Sperm motility is a prerequisite for achieving pregnancy, and alterations in sperm motility, along with sperm count and morphology, are commonly observed in subfertile men. The aim of the study was to determine whether the expression level of genes annotated with the Gene Ontology (GO) term 'sperm motility' differed in sperm collected from healthy men and men diagnosed with oligoasthenozoospermia. Reverse transcription quantitative real-time PCR (RT-qPCR), quantitative mass spectrometry (LC-MS/MS), and enrichment analyses were used to validate a set of 132 genes in 198 men present at an infertility clinic. Out of the 132 studied sperm-motility-associated genes, 114 showed differentially expressed levels in oligoasthenozoospermic men compared to those of normozoospermic controls using an RT-qPCR analysis. Of these, 94 genes showed a significantly lower expression level, and 20 genes showed a significantly higher expression level. An MS analysis of sperm from an independent cohort of healthy and subfertile men identified 692 differentially expressed proteins, of which 512 were significantly lower and 180 were significantly higher in oligoasthenozoospermic men compared to those of the normozoospermic controls. Of the 58 gene products quantified with both techniques, 48 (82.75%) showed concordant regulation. Besides the sperm-motility-associated proteins, the unbiased proteomics approach uncovered several novel proteins whose expression levels were specifically altered in abnormal sperm samples. Among these deregulated proteins, there was a clear overrepresentation of annotation terms related to sperm integrity, the cytoskeleton, and energy-related metabolism, as well as human phenotypes related to spermatogenesis and sperm-related abnormalities. These findings suggest that many of these proteins may serve as diagnostic markers of male infertility. Our study reveals an extended number of sperm-motility-associated genes with altered expression levels in the sperm of men with oligoasthenozoospermia. These genes and/or proteins can be used in the future for better assessments of male factor infertility.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Lea Simone Becker
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Mohammad A Al Smadi
- Reproductive Endocrinology and IVF Unit, King Hussein Medical Centre, Amman 11733, Jordan
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Markus Raeschle
- Department of Molecular Genetics, TU Kaiserslautern, 67653 Kaiserslautern, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
14
|
Chessari G, Criscione A, Tolone M, Bordonaro S, Rizzuto I, Riggio S, Macaluso V, Moscarelli A, Portolano B, Sardina MT, Mastrangelo S. High-density SNP markers elucidate the genetic divergence and population structure of Noticiana sheep breed in the Mediterranean context. Front Vet Sci 2023; 10:1127354. [PMID: 37205231 PMCID: PMC10185747 DOI: 10.3389/fvets.2023.1127354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Among livestock species, sheep have played an early major role in the Mediterranean area. Italy has a long history of sheep breeding and, despite a dramatic contraction in numbers, still raise several local populations that may represent a unique source of genetic diversity. The Noticiana is a breed of the south-eastern part of Sicily appreciated both for its dairy products and for its resistance to harsh environment. In this study, the high-density Illumina Ovine SNP600K BeadChip array was used for the first genome-wide characterization of 48 individuals of Noticiana sheep to investigate its diversity, the genome structure and the relationship within the context of worldwide and Italian breeds. Moreover, the runs of homozygosity (ROH) pattern and the pairwise FST-outliers were examined. Noticiana reported moderate levels of genetic diversity. The high percentage of short and medium length ROH segments (93% under 4 Mb) is indicative of a within breed relatedness dating back to ancient times, despite the absence of management for the mating plans and the reduced population size. In the worldwide context, the Southern Italian, Spanish and Albanian breeds overlapped in a macro cluster which also included the Noticiana sheep. The results highlighted ancestral genetic components of Noticiana shared with Comisana breed, and showed the clear separation from the other Italian sheep. This is likely the consequence of the combined effects of genetic drift, small population size and reproductive isolation. ROH islands and FST-outliers approaches in Noticiana identified genes and QTLs involved in milk and meat production, as well as related to the local adaptation, and therefore are consistent with the phenotypic traits of the studied breed. Although a wider sampling could be useful to deepen the genomic survey on Noticiana, these results represent a crucial starting point for the characterization of an important local genetic resource, with a view of supporting the local economy and preserving the biodiversity of the sheep species.
Collapse
Affiliation(s)
- Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Andrea Criscione
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Bordonaro
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Ilaria Rizzuto
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Vito Macaluso
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Angelo Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
- *Correspondence: Salvatore Mastrangelo,
| |
Collapse
|
15
|
Zhang R, Liang C, Guo X, Bao P, Pei J, Wu F, Yin M, Chu M, Yan P. Quantitative phosphoproteomics analyses reveal the regulatory mechanisms related to frozen-thawed sperm capacitation and acrosome reaction in yak (Bos grunniens). Front Physiol 2022; 13:1013082. [PMID: 36277216 PMCID: PMC9583833 DOI: 10.3389/fphys.2022.1013082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian spermatozoa are not mature after ejaculation and must undergo additional functional and structural changes within female reproductive tracts to achieve subsequent fertilization, including both capacitation and acrosome reaction (AR), which are dominated by post-translational modifications (PTMs), especially phosphorylation. However, the mechanism of protein phosphorylation during frozen-thawed sperm capacitation and AR has not been well studied. In this study, the phosphoproteomics approach was employed based on tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy to analyze frozen-thawed sperm in Ashidan yak under three sequential conditions (density gradient centrifugation-based purification, incubation in the capacitation medium and induction of AR processes by the calcium ionophore A23187 treatment). The identification of 1,377 proteins with 5,509 phosphorylation sites revealed changes in phosphorylation levels of sperm-specific proteins involved in regulation of spermatogenesis, sperm motility, energy metabolism, cilium movement, capacitation and AR. Some phosphorylated proteins, such as AKAP3, AKAP4, SPA17, PDMD11, CABYR, PRKAR1A, and PRKAR2A were found to regulate yak sperm capacitation and AR though the cAMP/PKA signaling pathway cascades. Notably, the phosphorylation level of SPA17 at Y156 increased in capacitated sperm, suggesting that it is also a novel functional protein besides AKAPs during sperm capacitation. Furthermore, the results of this study suggested that the phosphorylation of PRKAR1A and PRKAR2A, and the dephosphorylation of CABYR both play key regulatory role in yak sperm AR process. Protein-protein interaction analysis revealed that differentially phosphorylated proteins (AKAP3, AKAP4, FSIP2, PSMD11, CABYR, and TPPP2) related to capacitation and AR process played a key role in protein kinase A binding, sperm motility, reproductive process, cytoskeleton and sperm flagella function. Taken together, these data provide not only a solid foundation for further exploring phosphoproteome of sperm in yak, but an efficient way to identify sperm fertility-related marker phosphorylated proteins.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| |
Collapse
|
16
|
Zong Q, Mao B, Zhang HB, Wang B, Yu WJ, Wang ZW, Wang YF. Comparative Ubiquitome Analysis Reveals Deubiquitinating Effects Induced by Wolbachia Infection in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23169459. [PMID: 36012723 PMCID: PMC9409319 DOI: 10.3390/ijms23169459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
The endosymbiotic Wolbachia bacteria frequently cause cytoplasmic incompatibility (CI) in their insect hosts, where Wolbachia-infected males cross with uninfected females, leading to no or fewer progenies, indicating a paternal modification by Wolbachia. Recent studies have identified a Wolbachia protein, CidB, containing a DUB (deubiquitylating enzyme) domain, which can be loaded into host sperm nuclei and involved in CI, though the DUB activity is not necessary for CI in Drosophila melanogaster. To investigate whether and how Wolbachia affect protein ubiquitination in testes of male hosts and are thus involved in male fertility, we compared the protein and ubiquitinated protein expressions in D. melanogaster testes with and without Wolbachia. A total of 643 differentially expressed proteins (DEPs) and 309 differentially expressed ubiquitinated proteins (DEUPs) were identified to have at least a 1.5-fold change with a p-value of <0.05. Many DEPs were enriched in metabolic pathway, ribosome, RNA transport, and post-translational protein modification pathways. Many DEUPs were involved in metabolism, ribosome, and proteasome pathways. Notably, 98.1% DEUPs were downregulated in the presence of Wolbachia. Four genes coding for DEUPs in ubiquitin proteasome pathways were knocked down, respectively, in Wolbachia-free fly testes. Among them, Rpn6 and Rpn7 knockdown caused male sterility, with no mature sperm in seminal vesicles. These results reveal deubiquitylating effects induced by Wolbachia infection, suggesting that Wolbachia can widely deubiquitinate proteins that have crucial functions in male fertility of their hosts, but are not involved in CI. Our data provide new insights into the regulatory mechanisms of endosymbiont/host interactions and male fertility.
Collapse
|
17
|
Sperm Phosphoproteome: Unraveling Male Infertility. BIOLOGY 2022; 11:biology11050659. [PMID: 35625387 PMCID: PMC9137924 DOI: 10.3390/biology11050659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Infertility affects approximately 15% of couples worldwide of childbearing age, and in many cases the etiology of male infertility is unknown. The current standard evaluation of semen is insufficient to establish an accurate diagnosis. Proteomics techniques, such as phosphoproteomics, applied in this field are a powerful tool to understand the mechanisms that regulate sperm functions such as motility, which is essential for successful fertilization. Among the post-translational modifications of sperm proteins, this review summarizes, from a proteomic perspective, the updated knowledge of protein phosphorylation, in human spermatozoa, as a relevant molecular mechanism involved in the regulation of sperm physiology. Specifically, the role of sperm protein phosphorylation in motility and, consequently, in sperm quality is highlighted. Additionally, through the analysis of published comparative phosphoproteomic studies, some candidate human sperm phosphoproteins associated with low sperm motility are proposed. Despite the remarkable advances in phosphoproteomics technologies, the relatively low number of studies performed in human spermatozoa suggests that phosphoproteomics has not been applied to its full potential in studying male infertility yet. Therefore, further studies will improve the application of this procedure and overcome the limitations, increasing the understanding of regulatory mechanisms underlying protein phosphorylation in sperm motility and, consequently, in male fertility.
Collapse
|
18
|
Deletion of Hnrnpk Gene Causes Infertility in Male Mice by Disrupting Spermatogenesis. Cells 2022; 11:cells11081277. [PMID: 35455958 PMCID: PMC9028439 DOI: 10.3390/cells11081277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
HnRNPK is a heterogeneous nuclear ribonucleoprotein (hnRNP) that has been firmly implicated in transcriptional and post-transcriptional regulation. However, the molecular mechanisms by which hnRNPK orchestrates transcriptional or post-transcriptional regulation are not well understood due to early embryonic lethality in homozygous knockout mice, especially in a tissue-specific context. Strikingly, in this study, we demonstrated that hnRNPK is strongly expressed in the mouse testis and mainly localizes to the nucleus in spermatogonia, spermatocytes, and round spermatids, suggesting an important role for hnRNPK in spermatogenesis. Using a male germ cell-specific hnRNPK-depleted mouse model, we found that it is critical for testicular development and male fertility. The initiation of meiosis of following spermatogenesis was not affected in Hnrnpk cKO mice, while most germ cells were arrested at the pachytene stage of the meiosis and no mature sperm were detected in epididymides. The further RNA-seq analysis of Hnrnpk cKO mice testis revealed that the deletion of hnRNPK disturbed the expression of genes involved in male reproductive development, among which the meiosis genes were significantly affected, and Hnrnpk cKO spermatocytes failed to complete the meiotic prophase. Together, these results identify hnRNPK as an essential regulator of spermatogenesis and male fertility.
Collapse
|
19
|
Should All Fractions of the Boar Ejaculate Be Prepared for Insemination Rather Than Using the Sperm Rich Only? BIOLOGY 2022; 11:biology11020210. [PMID: 35205077 PMCID: PMC8869087 DOI: 10.3390/biology11020210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Simple Summary The swine industry is constantly looking for efficiency improvement, especially focusing on the artificial insemination (AI) process. One of the trends in AI centers is to maximize the number of doses obtained from one ejaculate. Seminal doses are usually prepared with the sperm-rich fraction or the whole ejaculate, but further studies are needed to understand how to prepare them properly. Thus, this study aims to analyze how accumulative ejaculate fractions may influence sperm storage, AI performance, and offspring. The results indicate that the presence of all ejaculate fractions within seminal doses does not affect either sperm quality or AI performance and offspring health. Therefore, this study highlights the possibility to use the bulk ejaculate for seminal dose preparation, leading to successful AI. Additionally, it results in a more time-efficient preparation of a greater number of seminal doses providing an economic advantage. Abstract Boar ejaculate is released in several well-characterized fractions, differing in terms of sperm concentration, seminal plasma volume, and composition. However, the inclusion of the last part of the ejaculate for artificial insemination (AI) purposes is still under debate due to its controversial effects. Thus, there is a need to study the potential synergistic impact of the different ejaculate fractions. We aimed to evaluate the effect of accumulative ejaculate fractions on sperm conservation, AI performance, and offspring health. Ejaculates (n = 51) were collected and distributed as follows: F1: sperm-rich fraction; F2: sperm-rich + intermediate fractions; F3: sperm-rich + intermediate + poor fractions. Each group was diluted in a commercial extender, packaged in seminal doses (2000 × 106 sperm/60 mL), and stored at ~16 °C. On day 3 of conservation, sperm were analyzed and used for AI (n = 174). High sperm quality was observed after storage without a significant difference between the groups (p > 0.05). Moreover, no differences were obtained for AI performance (pregnancy and farrowing rates, and litter size; p > 0.05) and offspring health (growth and blood analysis; p > 0.05). Conclusively, the presence of all ejaculate fractions within the seminal doses does not impair the reproductive performance, reporting important economic savings according to the economic model included here.
Collapse
|
20
|
Sebastián-Abad B, Llamas-López PJ, García-Vázquez FA. Relevance of the Ejaculate Fraction and Dilution Method on Boar Sperm Quality during Processing and Conservation of Seminal Doses. Vet Sci 2021; 8:vetsci8120292. [PMID: 34941819 PMCID: PMC8704743 DOI: 10.3390/vetsci8120292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
During boar semen processing and distribution, maximizing the work protocols in the laboratories becomes essential for the conservation of seminal doses. One of the recent implementations in the boar studs to improve efficiency has been semi-automatic semen collection systems, which do not allow to discard fractions of the ejaculate. The objective of this work was to evaluate the dilution method and vibrations (simulating delivery transport) effect on sperm quality (motility, viability, morphology, thermo-resistance test) according to the fraction of ejaculate collected. Two different fractions of the ejaculate were obtained [rich fraction (RF); total fractions (TF)] from six boars, and two dilution methods applied [pouring the extender over the semen (control; ES); pouring the semen over the extender (reverse; SE)]. The seminal doses (2000 × 106 sperm/50 mL) were preserved for 5 days. The results showed that the fraction collected affects sperm quality (better total and progressive motility, and faster sperm in TF; p < 0.05) regardless of the dilution method applied. However, these differences diminished after submitting the semen to the thermo-resistance test, with only differences in sperm viability being observed (p < 0.05). When seminal doses were subjected to vibrations, the sperm viability was more affected in the TF than in the RF group (p < 0.05). In conclusion, using the TF ejaculate leads to comparable results to the RF in sperm quality during storage regardless of the dilution method applied. However, the vibrations of seminal doses are more affected in doses prepared with TF than with RF, although more factors should be included to approach the real conditions during transport.
Collapse
Affiliation(s)
- Blanca Sebastián-Abad
- Cmno De Los Clementes Sn, GTC Spermatica Reproducción, 30817 Lorca, Spain; (B.S.-A.); (P.J.L.-L.)
- Departamento de Fisiología, Facultad de Veterinaria, Campus Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Pedro José Llamas-López
- Cmno De Los Clementes Sn, GTC Spermatica Reproducción, 30817 Lorca, Spain; (B.S.-A.); (P.J.L.-L.)
| | - Francisco Alberto García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
- Correspondence:
| |
Collapse
|