1
|
Singh J, Srikrishna S. Scribble knockdown induced metastasis, identification of its associated novel molecular candidates through proteome studies. Biochem Biophys Res Commun 2025; 769:151999. [PMID: 40367906 DOI: 10.1016/j.bbrc.2025.151999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Metastasis is the primary cause of cancer associated deaths globally. Loss of function of Scribble, a cell polarity regulator and tumor suppressor gene, is associated with many forms of human cancers but its role in cell proliferation and metastasis remains unknown. We generated metastatic cancer condition in Drosophila using UASRNAi-GAL4 system by knockdown of Scribble in the wing imaginal discs and tracked metastasis events from early to late pupae (0hr-84 h s) using fluorescence microscopy. Here, we report, for the first time, that the knockdown of Scribble alone could lead to the development of primary tumor in the wing imaginal discs, which is capable of establishing metastasis, apparently leading to secondary tumor formation in pupae at early stage, eventually resulting in absolute pupal lethality without organ development. MMP1, a metastasis biomarker, levels were assessed during pre-and post-metastatic phases in pupae using qRT-PCR and Western blot analysis. Further, we analyzed the proteome of Scribble knockdown induced tumor-bearing pupae by 2-D gel electrophoresis followed by MALDI-TOF MS to identify some novel proteins possibly involved in the progression of tumorigenesis and metastasis events. Six differentially expressed proteins, Obp 99b, Fer2LCH,CG13492, Hsp23, Ubiquitin and Colt, were identified in Scrib knockdown pupae and validated their expression using qRT-PCR. Thus, our results suggested that loss of Scrib alone capable of causing metastasis, without the need for cooperative interaction with oncogenic Ras. The newly identified proteins could be important candidates for biomarker/therapeutic target against Scrib associated metastatic cancers.
Collapse
Affiliation(s)
- Jyotsna Singh
- Cancer and Neurobiology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Mazumder H, Lin HY, Baddoo M, Gałan W, Polania-Villanueva D, Hicks C, Otohinoyi D, Peruzzi F, Madeja Z, Belancio VP, Flemington EK, Reiss K, Rak M. Human endogenous retroviruses (HERVs) associated with glioblastoma risk and prognosis. Cancer Gene Ther 2025:10.1038/s41417-024-00868-3. [PMID: 40389618 DOI: 10.1038/s41417-024-00868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/01/2024] [Accepted: 12/05/2024] [Indexed: 05/21/2025]
Abstract
Emerging evidence suggests expression from human endogenous retrovirus (HERV) loci likely contributes to, or is a biomarker of, glioblastoma multiforme (GBM) disease progression. However, the relationship between HERV expression and GBM malignant phenotype is unclear. Applying several in silico analyses based on data from The Cancer Genome Atlas (TCGA), we derived a locus-specific HERV transcriptome for glioma that revealed 211 HERVs significantly dysregulated in the comparisons of GBM vs. normal brain (NB), GBM vs. low-grade glioma (LGG), and LGG vs. NB. Our analysis supported development of a unique HERV scoring algorithm that segregated GBM, LGG, and NB. Interestingly, lower HERV scores showed correlation with lower survival in GBM. However, HERV scores were less robust in predicting LGG survival or LGG progression to GBM. Functional prediction analysis linked the 211 HERV loci with 18 voltage-gated potassium channel genes. The functional link between dysregulated HERVs and specific potassium channel genes may contribute to better understanding of GBM pathogenesis, disease progression, and possibly drug resistance.
Collapse
Affiliation(s)
- Harun Mazumder
- Biostatistics Program, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Hui-Yi Lin
- Biostatistics Program, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
- Louisiana Cancer Research Center, New Orleans, LA, USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, New Orleans, LA, USA
| | | | - Diana Polania-Villanueva
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Chindo Hicks
- Department of Genetics and the Bioinformatics and Genomics Program, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - David Otohinoyi
- Department of Genetics and the Bioinformatics and Genomics Program, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Francesca Peruzzi
- Louisiana Cancer Research Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Medicine, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Zbigniew Madeja
- Department of Cell Biology, Jagiellonian University in Kraków, Faculty of Biochemistry, Biophysics and Biotechnology, Kraków, Poland
| | - Victoria P Belancio
- Louisiana Cancer Research Center, New Orleans, LA, USA
- Tulane Cancer Center, Tulane Health Sciences Center, New Orleans, LA, USA
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erik K Flemington
- Louisiana Cancer Research Center, New Orleans, LA, USA
- Tulane Cancer Center, Tulane Health Sciences Center, New Orleans, LA, USA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Krzysztof Reiss
- Louisiana Cancer Research Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Monika Rak
- Louisiana Cancer Research Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Department of Cell Biology, Jagiellonian University in Kraków, Faculty of Biochemistry, Biophysics and Biotechnology, Kraków, Poland.
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
3
|
Aloisi M, Deloriea J, Casey C, Pino A, Morciano P, Grifoni D, Gamberi C. DROSOPHILA: THE CENTURY-LONG FLIGHT FROM THE WILD TO THE PATIENT. MEDICAL SCIENCE PULSE 2025; 19:1-15. [PMID: 40276781 PMCID: PMC12021435 DOI: 10.5604/01.3001.0054.9627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Background: Evolutionary conservation of key biological pathways between the fruit fly Drosophila melanogaster and humans and reduced genetic redundancy have long made flies a valuable genetic model organism. Thanks to the arsenal of sophisticated genetic tools developed and refined by the fly community, the use of Drosophila has expanded well beyond basic research. From the fundamental notion that genes are located on chromosomes to modeling human complex diseases such as cancer and neurological disorders, to designing fly "avatar" lines that precisely reproduce the specific mutations found in single cancer patients for personalized medicine, Drosophila continues to fuel biomedical advances. Numerous examples of drug testing in flies have yielded novel drug candidates, new uses for approved drugs, and applications for rapid drug optimization in modern approaches combining biology with medicinal chemistry. Thanks to the effectiveness of "fly pharmacology" approaches, Drosophila is also proficiently used to study the mechanism of action of environmental pollutants that represent a serious concern to human health. This review traces the history of some of the main advances in Drosophila biomedical and cancer research.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
- Department of Life, Health and Environmental Sciences, L'Aquila University, Italy
| | - Jay Deloriea
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Cody Casey
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Alexia Pino
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, L'Aquila University, Italy
- INFN-Laboratori Nazionali del Gran Sasso, Assergi, L'Aquila, Italy
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, L'Aquila University, Italy
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| |
Collapse
|
4
|
Kumar R, Srikrishna S. JNK Kinase regulates cachexia like syndrome in scribble knockdown tumor model of Drosophila melanogaster. Dev Biol 2025; 517:28-38. [PMID: 39293747 DOI: 10.1016/j.ydbio.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Cachexia and systemic organ wasting are metabolic syndrome often associated with cancer. However, the exact mechanism of cancer associated cachexia like syndrome still remain elusive. In this study, we utilized a scribble (scrib) knockdown induced hindgut tumor to investigate the role of JNK kinase in cachexia like syndrome. Scrib, a cell polarity regulator, also acts as a tumor suppressor gene. Its loss and mis-localization are reported in various type of malignant cancer-like breast, colon and prostate cancer. The scrib knockdown flies exhibited male lethality, reduced life span, systemic organ wasting and increased pJNK level in hindgut of female flies. Interestingly, knocking down of human JNK Kinase analogue, hep, in scrib knockdown background in hindgut leads to restoration of loss of scrib mediated lethality and systemic organ wasting. Our data showed that scrib loss in hindgut is capable of inducing cancer associated cachexia like syndrome. Here, we firstly report that blocking the JNK signaling pathway effectively rescued the cancer cachexia induced by scrib knockdown, along with its associated gut barrier disruption. These findings have significantly advanced our understanding of cancer cachexia and have potential implications for the development of therapeutic strategies. However, more research is needed to fully understand the complex mechanisms underlying this condition.
Collapse
|
5
|
Kim S, Park S, Kim YJ, Hyun J, Choi J. miRNA-199b-5p suppresses of oral squamous cell carcinoma by targeting apical-basolateral polarity via Scribble/Lgl. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102363. [PMID: 39558906 PMCID: PMC11570515 DOI: 10.1016/j.omtn.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
In epithelial cells, Scribble forms cell-cell junctions and contributes to cell morphology and homeostasis by regulating apical-basolateral polarity in mammals and functions as a tumor suppressor in many carcinomas. The initial diagnosis of oral squamous cell carcinoma is important, and its prognosis is poor when accompanied by metastasis. However, research on the mechanisms of oral squamous cell carcinoma metastasis is insufficient. Herein, we showed that Scribble regulates the apical-basolateral polarity of oral squamous cell carcinoma by regulating lethal giant larvae 1, Scribble module and E-cadherin, the adhesion junction. The expression of lethal giant larvae 1 and E-cadherin decreased when the expression of Scribble was knocked down and their localization was completely disrupted in both the oral squamous cell carcinoma cell line and in vivo model. In particular, the Scribble was involved in oral squamous cell carcinoma metastasis via hsa-miR-199b-5p, which is a microenvironmental factor of hypoxia. The disruption of Scribble localization under hypoxic conditions, but its localization was maintained in miR-199b-5p oral squamous cell carcinoma cell lines and in vivo. These results suggest that Scribble functions as a tumor suppressor marker mediated by miR-199b-5p in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shihyun Kim
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Yong-Jae Kim
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Jeongeun Hyun
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
- Department of Biomedical Sciences & Biosystem, College of Bio-convergence, Dankook University, Cheonan 311166, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
6
|
Chen T, Jiang Q, Wang Z, Wang F, Fu Z. LncRNA AF117829.1 is correlated with prognosis and immune infiltration and facilitates tumor progression by targeting OR7C1 in colorectal cancer. Transl Cancer Res 2024; 13:5347-5364. [PMID: 39525019 PMCID: PMC11543043 DOI: 10.21037/tcr-24-378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors in the digestive system with a high incidence, a poor prognosis and an unsatisfactory therapeutic effect. Long non-coding RNAs (lncRNAs) play crucial roles in various biological processes related to tumor progression. Immune-related lncRNA gene AF117829.1 has been reported to participate in the construction of clinical predictive signature in CRC patients, suggesting that it may be involved in regulating the immune landscape and progression of CRC. However, the clinical and immunological significance and biological function of AF117829.1 in CRC remain unclear. In this study, we aim to explore the roles of AF117829.1 in CRC progression by bioinformatics analysis and experimental studies, thereby providing new targets for CRC treatment. Methods This study collected data from The Cancer Genome Atlas (TCGA) database and explored the role of AF117829.1 in CRC by bioinformatics analysis. Cell-type Identification By Estimating Relative Subsets Of known RNA Transcripts (CIBERSORT) and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) methods estimated the immune infiltration. Gene Set Enrichment Analysis (GSEA) was performed to evaluate the enrichment of functional pathways and gene signatures. The biological functions and mechanism of AF117829.1 in CRC progression were validated using CRC tissues and in vitro experiments. Results In our study, high expression of AF117829.1 was found in pan-cancer including CRC and was positively associated with tumor (T) stage and tumor-node-metastasis (TNM) stage in CRC. The survival analysis results showed that CRC patients with high-AF117829.1 expression had significantly shorter overall survival (OS) time than those with low-AF117829.1 expression. Moreover, AF117829.1 expression was negatively associated with microsatellite instability (MSI) in colon adenocarcinoma (COAD). Subsequently, AF117829.1 expression was confirmed to be significantly associated with StromalScore, immune cell infiltration (ICI) levels and immune checkpoints (ICP) genes expression in CRC. The immunophenoscore (IPS) results indicated that immunotherapy could be more effective in CRC patients with low-AF117829.1 expression. Then we confirmed that AF117829.1 was highly expressed in CRC cell lines and tissues. Furthermore, our GSEA results showed that olfactory transduction-related signaling pathways were significantly enriched in the high-AF117829.1 expression group. Finally, in vitro experiments confirmed that AF117829.1 overexpression promoted the proliferation, migration and invasion of CRC cells by targeting olfactory receptor family 7 subfamily C member 1 (OR7C1). Conclusions LncRNA AF117829.1 is closely related to the prognosis, immunological characteristics and immunotherapy response of CRC patients and promotes malignant progression of CRC by targeting OR7C1. Moreover, AF117829.1 may be a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Tao Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Pukou People’s Hospital, Nanjing, China
| | - Qiusheng Jiang
- Department of General Surgery, Nanjing Pukou People’s Hospital, Nanjing, China
| | - Zhenlin Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zan Fu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Zhu X, Zhang P. m6A-modified circXPO1 accelerates colorectal cancer progression via interaction with FMRP to promote WWC2 mRNA decay. J Transl Med 2024; 22:931. [PMID: 39402642 PMCID: PMC11472528 DOI: 10.1186/s12967-024-05716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Recent evidence has demonstrated the vital roles of circular RNAs (circRNAs) in the progression of colorectal cancer (CRC); however, their functions and mechanisms in CRC need to be further explored. This study aimed to uncover the biological function of circXPO1 in CRC progression. METHODS CircXPO1 was identified by Sanger sequencing, RNase R, and actinomycin D treatment assays. Colony formation, scratch, transwell assays, and mouse xenograft models were adopted to evaluate CRC cell growth and metastasis in vitro and in vivo. Subcellular expression of circXPO1 was detected by FISH and nuclear-cytoplasmic separation assays. Molecular mechanisms were investigated by MeRIP, RIP, and RNA pull-down assays. Target molecular expression was detected by RT-qPCR, Western blotting and immunohistochemical staining. RESULTS circXPO1 was up-regulated in CRC tissues and cells, which indicated a poor prognosis of CRC patients. circXPO1 deficiency delayed the growth, EMT, and metastasis of CRC cells. Mechanistical experiments indicated that down-regulation of ALKBH5 enhanced IGF2BP2-mediated m6A modification of circXPO1 to increase circXPO1 expression. Furthermore, circXPO1 interacted with FMRP to reduce the mRNA stability of WWC2, which consequently resulted in Hippo-YAP pathway activation. Rescue experiments suggested that WWC2 overexpression abrogated circXPO1-mediated malignant capacities of CRC cells. The in vivo growth and liver metastasis of CRC cells were restrained by circXPO1 depletion or WWC2 overexpression. CONCLUSIONS m6A-modified circXPO1 by ALKBH5/IGF2BP2 axis destabilized WWC2 via interaction with FMRP to activate Hippo-YAP pathway, thereby facilitating CRC growth and metastasis. Targeting circXPO1 might be a potential therapeutic strategy for CRC.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/metabolism
- Disease Progression
- Fragile X Mental Retardation Protein/metabolism
- Fragile X Mental Retardation Protein/genetics
- Gene Expression Regulation, Neoplastic
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Metastasis
- RNA Stability/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
Collapse
Affiliation(s)
- Xiaowen Zhu
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, No. 258 Xuefu Road, Xiangyang District, Jiamusi, 154000, Heilongjiang Province, P. R. China
- General surgery, The first Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang Province, P. R. China
| | - Pengxia Zhang
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, No. 258 Xuefu Road, Xiangyang District, Jiamusi, 154000, Heilongjiang Province, P. R. China.
| |
Collapse
|
8
|
Mohammadpour S, Torshizi Esfahani A, Sarpash S, Vakili F, Zafarjafarzadeh N, Mashaollahi A, Pardakhtchi A, Nazemalhosseini-Mojarad E. Hippo Signaling Pathway in Colorectal Cancer: Modulation by Various Signals and Therapeutic Potential. Anal Cell Pathol (Amst) 2024; 2024:5767535. [PMID: 39431199 PMCID: PMC11489006 DOI: 10.1155/2024/5767535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health issue, marked by elevated occurrence and mortality statistics. Despite the availability of various treatments, including chemotherapy, radiotherapy, and targeted therapy, CRC cells often exhibit resistance to these interventions. As a result, it is imperative to identify the disease at an earlier stage and enhance the response to treatment by acquiring a deeper comprehension of the processes driving tumor formation, aggressiveness, metastasis, and resistance to therapy. The Hippo pathway plays a critical role in facilitating the initiation of tumorigenesis and frequently experiences disruption within CRC because of genetic mutations and modified expression in its fundamental constituents. Targeting upstream regulators or core Hippo pathway components may provide innovative therapeutic strategies for modulating Hippo signaling dysfunction in CRC. To advance novel therapeutic techniques for CRC, it is imperative to grasp the involvement of the Hippo pathway in CRC and its interaction with alternate signaling pathways, noncoding RNAs, gut microbiota, and the immune microenvironment. This review seeks to illuminate the function and control of the Hippo pathway in CRC, ultimately aiming to unearth innovative therapeutic methodologies for addressing this ailment.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Pardakhtchi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Yang J, Yang C, Yang G, Wang R, Li J, Song Y. Pan-cancer analysis of the prognostic and immunological role of hippo-YAP signaling pathway. Discov Oncol 2024; 15:504. [PMID: 39333438 PMCID: PMC11436565 DOI: 10.1007/s12672-024-01212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/01/2024] [Indexed: 09/29/2024] Open
Abstract
The Hippo-Yes-associated protein (Hippo-YAP) signaling pathway, a conserved pathway that regulates organ size, participates in tumor progression. However, there are few comprehensive analyses of tumor prognosis and immunity. In the present study, TCGA, GTEx, GEO, TIMER2, STRING, GSCA, ImmuCellAI, and other bioinformatics tools were used to reveal the involvement of the Hippo-YAP signaling pathway in the prognosis and immunity of pan-cancers. The obtained results showed that mRNA expression differences of Hippo-YAP pathway genes between normal samples and tumor samples in pan-cancers and some genes (such as TEAD4, MAP4K4, and STK3) might affect the prognosis of patients with skin cutaneous melanoma (SKCM) and pancreatic adenocarcinoma (PAAD). Furthermore, mutation and methylation of the Hippo-YAP signaling pathway genes in normal and primary tumor tissues differ in various cancers (KIRP, BRCA). Additionally, the relationship between the tumor microenvironment, molecular pathways, and the Hippo-YAP pathway indicated that it might lead to a suppressive immune microenvironment that affects the efficacy of immunotherapy. This is a pan-cancer overview of the Hippo-YAP signaling pathway genes, which explores the aberrant expression or mutation of this pathway that regulates the tumor microenvironment and immunotherapy.
Collapse
Affiliation(s)
- Jing Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Guang Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
10
|
Zhao Y, Zhang B, Ma Y, Guo M, Zhao F, Chen J, Wang B, Jin H, Zhou F, Guan J, Zhao Q, Liu Q, Wang H, Zhao F, Wang X. Distinct molecular profiles drive multifaceted characteristics of colorectal cancer metastatic seeds. J Exp Med 2024; 221:e20231359. [PMID: 38502057 PMCID: PMC10949939 DOI: 10.1084/jem.20231359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 03/20/2024] Open
Abstract
Metastasis of primary tumors remains a challenge for early diagnosis and prevention. The cellular properties and molecular drivers of metastatically competent clones within primary tumors remain unclear. Here, we generated 10-16 single cell-derived lines from each of three colorectal cancer (CRC) tumors to identify and characterize metastatic seeds. We found that intrinsic factors conferred clones with distinct metastatic potential and cellular communication capabilities, determining organ-specific metastasis. Poorly differentiated or highly metastatic clones, rather than drug-resistant clones, exhibited poor clinical prognostic impact. Personalized genetic alterations, instead of mutation burden, determined the occurrence of metastatic potential during clonal evolution. Additionally, we developed a gene signature for capturing metastatic potential of primary CRC tumors and demonstrated a strategy for identifying metastatic drivers using isogenic clones with distinct metastatic potential in primary tumors. This study provides insight into the origin and mechanisms of metastasis and will help develop potential anti-metastatic therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fuqiang Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianan Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fulai Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiawei Guan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Fitzpatrick A, Iravani M, Mills A, Vicente D, Alaguthurai T, Roxanis I, Turner NC, Haider S, Tutt ANJ, Isacke CM. Genomic profiling and pre-clinical modelling of breast cancer leptomeningeal metastasis reveals acquisition of a lobular-like phenotype. Nat Commun 2023; 14:7408. [PMID: 37973922 PMCID: PMC10654396 DOI: 10.1038/s41467-023-43242-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Breast cancer leptomeningeal metastasis (BCLM), where tumour cells grow along the lining of the brain and spinal cord, is a devastating development for patients. Investigating this metastatic site is hampered by difficulty in accessing tumour material. Here, we utilise cerebrospinal fluid (CSF) cell-free DNA (cfDNA) and CSF disseminated tumour cells (DTCs) to explore the clonal evolution of BCLM and heterogeneity between leptomeningeal and extracranial metastatic sites. Somatic alterations with potential therapeutic actionability were detected in 81% (17/21) of BCLM cases, with 19% detectable in CSF cfDNA only. BCLM was enriched in genomic aberrations in adherens junction and cytoskeletal genes, revealing a lobular-like breast cancer phenotype. CSF DTCs were cultured in 3D to establish BCLM patient-derived organoids, and used for the successful generation of BCLM in vivo models. These data reveal that BCLM possess a unique genomic aberration profile and highlight potential cellular dependencies in this hard-to-treat form of metastatic disease.
Collapse
Affiliation(s)
- Amanda Fitzpatrick
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Marjan Iravani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Adam Mills
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - David Vicente
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Nicholas C Turner
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Andrew N J Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Breast Cancer Now Research Unit, Guy's Hospital, King's College London, London, UK
- Oncology and Haematology Directorate, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Clare M Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
12
|
Chen Y, Su H, Zhao J, Na Z, Jiang K, Bacchiocchi A, Loh KH, Halaban R, Wang Z, Cao X, Slavoff SA. Unannotated microprotein EMBOW regulates the interactome and chromatin and mitotic functions of WDR5. Cell Rep 2023; 42:113145. [PMID: 37725512 PMCID: PMC10629662 DOI: 10.1016/j.celrep.2023.113145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The conserved WD40-repeat protein WDR5 interacts with multiple proteins both inside and outside the nucleus. However, it is currently unclear whether and how the distribution of WDR5 between complexes is regulated. Here, we show that an unannotated microprotein EMBOW (endogenous microprotein binder of WDR5) dually encoded in the human SCRIB gene interacts with WDR5 and regulates its binding to multiple interaction partners, including KMT2A and KIF2A. EMBOW is cell cycle regulated, with two expression maxima at late G1 phase and G2/M phase. Loss of EMBOW decreases WDR5 interaction with KIF2A, aberrantly shortens mitotic spindle length, prolongs G2/M phase, and delays cell proliferation. In contrast, loss of EMBOW increases WDR5 interaction with KMT2A, leading to WDR5 binding to off-target genes, erroneously increasing H3K4me3 levels, and activating transcription of these genes. Together, these results implicate EMBOW as a regulator of WDR5 that regulates its interactions and prevents its off-target binding in multiple contexts.
Collapse
Affiliation(s)
- Yanran Chen
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Haomiao Su
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Jianing Zhao
- Frontier Innovation Center, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai 200433, China
| | - Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Kevin Jiang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Antonella Bacchiocchi
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ken H Loh
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhentian Wang
- Frontier Innovation Center, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai 200433, China
| | - Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA.
| |
Collapse
|
13
|
Yao L, Li Y, Li S, Wang M, Cao H, Xu L, Xu Y. ARHGAP39 is a prognostic biomarker involved in immune infiltration in breast cancer. BMC Cancer 2023; 23:440. [PMID: 37189064 DOI: 10.1186/s12885-023-10904-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Current studies on the role of ARHGAP39 mainly focused on its effect on neurodevelopment. However, there are few studies on the comprehensive analysis of ARHGAP39 in breast cancer. METHODS ARHGAP39 expression level was analyzed based on the Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression Project (GTEx), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database and validated by qPCR in various cell lines and tumor tissues. The prognostic value was analyzed using Kaplan-Meier curve analysis. CCK-8 and transwell assays were conducted to identify the biological function of ARHGAP39 in tumorigenesis. Signaling pathways related to ARHGAP39 expression were identified by the GO and KEGG enrichment analysis and gene set enrichment analysis (GSEA). The correlations between ARHGAP39 and cancer immune infiltrates were investigated via TIMER, CIBERSORT, ESTIMATE and tumor-immune system interactions database (TISIDB). RESULTS ARHGAP39 was overexpressed in breast cancer and associated with poor survival outcomes. In vitro experiments revealed that ARHGAP39 could facilitate the proliferation, migration, and invasion capability of breast cancer cells. GSEA analysis showed that the main enrichment pathways of ARHGAP39 was immunity-related pathways. Considering the immune infiltration level, ARHGAP39 was negatively associated with infiltrating levels of CD8 + T cell and macrophage, and positively associated with CD4 + T cell. Furthermore, ARHGAP39 was significantly negatively correlated with immune score, stromal score, and ESTIMATE score. CONCLUSIONS Our findings suggested that ARHGAP39 can be used as a potential therapeutic target and prognostic biomarker in breast cancer. ARHGAP39 was indeed a determinant factor of immune infiltration.
Collapse
Affiliation(s)
- Litong Yao
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yuwei Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Siyuan Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mozhi Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Hongyi Cao
- Department of Pathology, the First Hospital of China Medical University and College of Basic Medical Sciences, Shenyang, Liaoning, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Yingying Xu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
14
|
Zhu N, Yang R, Wang X, Yuan L, Li X, Wei F, Zhang L. The Hippo signaling pathway: from multiple signals to the hallmarks of cancers. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 36942989 DOI: 10.3724/abbs.2023035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Evolutionarily conserved, the Hippo signaling pathway is critical in regulating organ size and tissue homeostasis. The activity of this pathway is tightly regulated under normal circumstances, since its physical function is precisely maintained to control the rate of cell proliferation. Failure of maintenance leads to a variety of tumors. Our understanding of the mechanism of Hippo dysregulation and tumorigenesis is becoming increasingly precise, relying on the emergence of upstream inhibitor or activator and the connection linking Hippo target genes, mutations, and related signaling pathways with phenotypes. In this review, we summarize recent reports on the signaling network of the Hippo pathway in tumorigenesis and progression by exploring its critical mechanisms in cancer biology and potential targeting in cancer therapy.
Collapse
Affiliation(s)
- Ning Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruizeng Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaodong Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Liang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
15
|
Chen Y, Lu Y, Huang C, Wu J, Shao Y, Wang Z, Zhang H, Fu Z. Subtypes analysis and prognostic model construction based on lysosome-related genes in colon adenocarcinoma. Front Genet 2023; 14:1149995. [PMID: 37168510 PMCID: PMC10166181 DOI: 10.3389/fgene.2023.1149995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Background: Lysosomes are essential for the development and recurrence of cancer. The relationship between a single lysosome-related gene and cancer has previously been studied, but the relationship between the lysosome-related genes (LRGs) and colon adenocarcinoma (COAD) remains unknown. This research examined the role of lysosome-related genes in colon adenocarcinoma. Methods: 28 lysosome-related genes associated with prognosis (PLRGs) were found by fusing the gene set that is differently expressed between tumor and non-tumor in colon adenocarcinoma with the gene set that is related to lysosomes. Using consensus unsupervised clustering of PLRGs, the colon adenocarcinoma cohort was divided into two subtypes. Prognostic and tumor microenvironment (TME) comparisons between the two subtypes were then made. The PLRGs_score was constructed using the least absolute shrinkage and selection operator regression (LASSO) method to quantify each patient's prognosis and provide advice for treatment. Lastly, Western Blot and immunohistochemistry (IHC) were used to identify MOGS expression at the protein level in colon adenocarcinoma tissues. Results: PLRGs had more somatic mutations and changes in genetic level, and the outcomes of the two subtypes differed significantly in terms of prognosis, tumor microenvironment, and enrichment pathways. Then, PLRGs_score was established based on two clusters of differential genes in the cancer genome atlas (TCGA) database, and external verification was performed using the gene expression omnibus (GEO) database. Then, we developed a highly accurate nomogram to enhance the clinical applicability of the PLRGs_score. Finally, a higher PLRGs_score was associated with a poorer overall survival (OS), a lower tumor mutation burden (TMB), a lower cancer stem cell (CSC) index, more microsatellite stability (MSS), and a higher clinical stage. MOGS was substantially elevated at the protein level in colon adenocarcinoma as additional confirmation. Conclusion: Overall, based on PLRGs, we identified two subtypes that varied significantly in terms of prognosis and tumor microenvironment. Then, in order to forecast patient prognosis and make treatment suggestions, we developed a diagnostic model with major significance for prognosis, clinical relevance, and immunotherapy. Moreover, we were the first to demonstrate that MOGS is highly expressed in colon adenocarcinoma.
Collapse
Affiliation(s)
- Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyu Wu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Zan Fu,
| |
Collapse
|
16
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
17
|
Huang M, Ye Y, Chen Y, Zhu J, Xu L, Cheng W, Lu X, Yan F. Identification and validation of an inflammation-related lncRNAs signature for improving outcomes of patients in colorectal cancer. Front Genet 2022; 13:955240. [PMID: 36246600 PMCID: PMC9561096 DOI: 10.3389/fgene.2022.955240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Colorectal cancer is the fourth most deadly cancer worldwide. Although current treatment regimens have prolonged the survival of patients, the prognosis is still unsatisfactory. Inflammation and lncRNAs are closely related to tumor occurrence and development in CRC. Therefore, it is necessary to establish a new prognostic signature based on inflammation-related lncRNAs to improve the prognosis of patients with CRC. Methods: LASSO-penalized Cox analysis was performed to construct a prognostic signature. Kaplan-Meier curves were used for survival analysis and ROC curves were used to measure the performance of the signature. Functional enrichment analysis was conducted to reveal the biological significance of the signature. The R package "maftool" and GISTIC2.0 algorithm were performed for analysis and visualization of genomic variations. The R package "pRRophetic", CMap analysis and submap analysis were performed to predict response to chemotherapy and immunotherapy. Results: An effective and independent prognostic signature, IRLncSig, was constructed based on sixteen inflammation-related lncRNAs. The IRLncSig was proved to be an independent prognostic indicator in CRC and was superior to clinical variables and the other four published signatures. The nomograms were constructed based on inflammation-related lncRNAs and detected by calibration curves. All samples were classified into two groups according to the median value, and we found frequent mutations of the TP53 gene in the high-risk group. We also found some significantly amplificated regions in the high-risk group, 8q24.3, 20q12, 8q22.3, and 20q13.2, which may regulate the inflammatory activity of cancer cells in CRC. Finally, we identified chemotherapeutic agents for high-risk patients and found that these patients were more likely to respond to immunotherapy, especially anti-CTLA4 therapy. Conclusion: In short, we constructed a new signature based on sixteen inflammation-related lncRNAs to improve the outcomes of patients in CRC. Our findings have proved that the IRLncSig can be used as an effective and independent marker for predicting the survival of patients with CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
19
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
20
|
Individual and Co-Expression Patterns of FAM83H and SCRIB at Diagnosis Are Associated with the Survival of Colorectal Carcinoma Patients. Diagnostics (Basel) 2022; 12:diagnostics12071579. [PMID: 35885485 PMCID: PMC9318331 DOI: 10.3390/diagnostics12071579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: FAM83H is important in teeth development; however, an increasing number of reports have indicated a role for it in human cancers. FAM83H is involved in cancer progression in association with various oncogenic molecules, including SCRIB. In the analysis of the public database, there was a significant association between FAM83H and SCRIB in colorectal carcinomas. However, studies evaluating the association of FAM83H and SCRIB in colorectal carcinoma have been limited. Methods: The clinicopathological significance of the immunohistochemical expression of FAM83H and SCRIB was evaluated in 222 colorectal carcinomas. Results: The expressions of FAM83H and SCRIB were significantly associated in colorectal carcinoma tissue. In univariate analysis, the nuclear expressions of FAM83H and SCRIB and the cytoplasmic expression of SCRIB were significantly associated with shorter survival of colorectal carcinomas. The nuclear expressions of FAM83H and SCRIB and the cytoplasmic expression of SCRIB were independent indicators of shorter cancer-specific survival in multivariate analysis. A co-expression pattern of nuclear FAM83H and cytoplasmic SCRIB predicted shorter cancer-specific survival (p < 0.001) and relapse-free survival (p = 0.032) in multivariate analysis. Conclusions: This study suggests that FAM83H and SCRIB might be used as prognostic markers of colorectal carcinomas and as potential therapeutic targets for colorectal carcinomas.
Collapse
|
21
|
Liu X, Quan J, Shen Z, Zhang Z, Chen Z, Li L, Li X, Hu G, Deng X. Metallothionein 2A (MT2A) controls cell proliferation and liver metastasis by controlling the MST1/LATS2/YAP1 signaling pathway in colorectal cancer. Cancer Cell Int 2022; 22:205. [PMID: 35642057 PMCID: PMC9158144 DOI: 10.1186/s12935-022-02623-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the three major cancers in the world and is the cancer with the most liver metastasis. The present study aimed to investigate the role of metallothionein 2A (MT2A) in the modulation of CRC cell proliferation and liver metastasis, as well as its molecular mechanisms. METHODS The expression profile of metallothionein 2A (MT2A) in colorectal cancer retrieved from TCGA, GEO and Oncomine database. The biological effect of MT2A overexpression was investigated mainly involving cell proliferation and migration in CRC cells as well as growth and metastasis in CRC animal models. To explore the specific mechanism of MT2A metastasis in CRC, transcriptome sequencing was used to compare the overall expression difference between the control group and the MT2A overexpression group. RESULTS Metallothionein 2A (MT2A) was downregulated in the tumor tissues of patients with CRC compared to adjacent normal tissues and was related to the tumor M stage of patients. MT2A overexpression inhibited CRC cell proliferation and migration in cells, as well as growth and metastasis in CRC animal models. While knockdown of MT2A had the opposite effect in cells. Western blotting confirmed that MT2A overexpression promoted the phosphorylation of MST1, LAST2 and YAP1, thereby inhibiting the Hippo signaling pathway. Additionally, specific inhibitors of MST1/2 inhibited MT2A overexpression-mediated phosphorylation and relieved the inhibition of the Hippo signaling pathway, thus promoting cell proliferation. Immunohistochemistry in subcutaneous grafts and liver metastases further confirmed this result. CONCLUSIONS Our results suggested that MT2A is involved in CRC growth and liver metastasis. Therefore, MT2A and MST1 may be potential therapeutic targets for patients with CRC, especially those with liver metastases.
Collapse
Affiliation(s)
- Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Jun Quan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhaolong Shen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| | - Zhijian Chen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xiaofeng Deng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Renmin Road, Changsha, 410000, Hunan, People's Republic of China.
| |
Collapse
|
22
|
Solís-Fernández G, Montero-Calle A, Martínez-Useros J, López-Janeiro Á, de los Ríos V, Sanz R, Dziakova J, Milagrosa E, Fernández-Aceñero MJ, Peláez-García A, Casal JI, Hofkens J, Rocha S, Barderas R. Spatial Proteomic Analysis of Isogenic Metastatic Colorectal Cancer Cells Reveals Key Dysregulated Proteins Associated with Lymph Node, Liver, and Lung Metastasis. Cells 2022; 11:447. [PMID: 35159257 PMCID: PMC8834500 DOI: 10.3390/cells11030447] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Metastasis is the primary cause of colorectal cancer (CRC) death. The liver and lung, besides adjacent lymph nodes, are the most common sites of metastasis. Here, we aimed to study the lymph nodes, liver, and lung CRC metastasis by quantitative spatial proteomics analysis using CRC cell-based models that recapitulate these metastases. The isogenic KM12 cell system composed of the non-metastatic KM12C cells, liver metastatic KM12SM cells, and liver and lung metastatic KM12L4a cells, and the isogenic non-metastatic SW480 and lymph nodes metastatic SW620 cells, were used. Cells were fractionated to study by proteomics five subcellular fractions corresponding to cytoplasm, membrane, nucleus, chromatin-bound proteins, and cytoskeletal proteins, and the secretome. Trypsin digested extracts were labeled with TMT 11-plex and fractionated prior to proteomics analysis on a Q Exactive. We provide data on protein abundance and localization of 4710 proteins in their different subcellular fractions, depicting dysregulation of proteins in abundance and/or localization in the most common sites of CRC metastasis. After bioinformatics, alterations in abundance and localization for selected proteins from diverse subcellular localizations were validated via WB, IF, IHC, and ELISA using CRC cells, patient tissues, and plasma samples. Results supported the relevance of the proteomics results in an actual CRC scenario. It was particularly relevant that the measurement of GLG1 in plasma showed diagnostic ability of advanced stages of the disease, and that the mislocalization of MUC5AC and BAIAP2 in the nucleus and membrane, respectively, was significantly associated with poor prognosis of CRC patients. Our results demonstrate that the analysis of cell extracts dilutes protein alterations in abundance in specific localizations that might only be observed studying specific subcellular fractions, as here observed for BAIAP2, GLG1, PHYHIPL, TNFRSF10A, or CDKN2AIP, which are interesting proteins that should be further analyzed in CRC metastasis.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain;
| | - Álvaro López-Janeiro
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas (CIB-CSIC), 28039 Madrid, Spain;
| | - Rodrigo Sanz
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Jana Dziakova
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Elena Milagrosa
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - José Ignacio Casal
- Centro de Investigaciones Biológicas (CIB-CSIC), Department of Molecular Biomedicine, 28039 Madrid, Spain;
| | - Johan Hofkens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| |
Collapse
|
23
|
Pan J, Liu F, Xiao X, Xu R, Dai L, Zhu M, Xu H, Xu Y, Zhao A, Zhou W, Dang Y, Ji G. METTL3 promotes colorectal carcinoma progression by regulating the m6A-CRB3-Hippo axis. J Exp Clin Cancer Res 2022; 41:19. [PMID: 35012593 PMCID: PMC8744223 DOI: 10.1186/s13046-021-02227-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colorectal carcinoma (CRC) is the third most common cancer and second most common cause of cancer-related deaths worldwide. Ribonucleic acid (RNA) N6-methyladnosine (m6A) and methyltransferase-like 3 (METTL3) play key roles in cancer progression. However, the roles of m6A and METTL3 in CRC progression require further clarification. METHODS Adenoma and CRC samples were examined to detect m6A and METTL3 levels, and tissue microarrays were performed to evaluate the association of m6A and METTL3 levels with the survival of patients with CRC. The biological functions of METTL3 were investigated through cell counting kit-8, wound healing, and transwell assays. M6A epitranscriptomic microarray, methylated RNA immunoprecipitation-qPCR, RNA stability, luciferase reporter, and RNA immunoprecipitation assays were performed to explore the mechanism of METTL3 in CRC progression. RESULTS M6A and METTL3 levels were substantially elevated in CRC tissues, and patients with CRC with a high m6A or METTL3 levels exhibited shorter overall survival. METTL3 knockdown substantially inhibited the proliferation, migration, and invasion of CRC cells. An m6A epitranscriptomic microarray revealed that the cell polarity regulator Crumbs3 (CRB3) was the downstream target of METTL3. METTL3 knockdown substantially reduced the m6A level of CRB3, and inhibited the degradation of CRB3 mRNA to increase CRB3 expression. Luciferase reporter assays also showed that the transcriptional level of wild-type CRB3 significantly increased after METTL3 knockdown but not its level of variation. Knockdown of YT521-B homology domain-containing family protein 2 (YTHDF2) substantially increased CRB3 expression. RNA immunoprecipitation assays also verified the direct interaction between the YTHDF2 and CRB3 mRNA, and this direct interaction was impaired after METTL3 inhibition. In addition, CRB3 knockdown significantly promoted the proliferation, migration, and invasion of CRC cells. Mechanistically, METTL3 knockdown activated the Hippo pathway and reduced nuclear localization of Yes1-associated transcriptional regulator, and the effects were reversed by CRB3 knockdown. CONCLUSIONS M6A and METTL3 levels were substantially elevated in CRC tissues relative to normal tissues. Patients with CRC with high m6A or METTL3 levels exhibited shorter overall survival, and METTL3 promoted CRC progression. Mechanistically, METTL3 regulated the progression of CRC by regulating the m6A-CRB3-Hippo pathway.
Collapse
Affiliation(s)
- Jiashu Pan
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Department of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Feng Liu
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiaoli Xiao
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ruohui Xu
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Liang Dai
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Mingzhe Zhu
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hanchen Xu
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yangxian Xu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjun Zhou
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yanqi Dang
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Guang Ji
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
24
|
Wang M, Dai M, Wang D, Xiong W, Zeng Z, Guo C. The regulatory networks of the Hippo signaling pathway in cancer development. J Cancer 2021; 12:6216-6230. [PMID: 34539895 PMCID: PMC8425214 DOI: 10.7150/jca.62402] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/15/2021] [Indexed: 01/14/2023] Open
Abstract
The Hippo signaling pathway is a relatively young tumor-related signaling pathway. Although it was discovered lately, research on it developed rapidly. The Hippo signaling pathway is closely relevant to the occurrence and development of tumors and the maintenance of organ size and other biological processes. This manuscript focuses on YAP, the core molecule of the Hippo signaling pathway, and discussion the upstream and downstream regulatory networks of the Hippo signaling pathway during tumorigenesis and development. It also summarizes the relevant drugs involved in this signaling pathway, which may be helpful to the development of targeted drugs for cancer therapy.
Collapse
Affiliation(s)
- Maonan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Manli Dai
- Hunan Food and Drug Vocational College, Changsha 410036, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|