1
|
Liu D, Wang X, Liu Z, Ding L, Liu M, Li T, Zeng S, Zheng M, Wang L, Zhang J, Zhang F, Li M, Liu G, Tang Y. Platelet Membrane and miR-181a-5p Doubly Optimized Nanovesicles Enhance Cardiac Repair Post-Myocardial Infarction through Macrophage Polarization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16520-16532. [PMID: 40064701 PMCID: PMC11931480 DOI: 10.1021/acsami.4c19325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/21/2025]
Abstract
Macrophages play a crucial role in cardiac remodeling and prognosis after myocardial infarction (MI). Our previous studies have built a scalable method for preparing scaled stem cell nanovesicles (NVs) and demonstrated their remarkable reparative effects on ischemic heart disease. To further enhance the targeted reparative capabilities of the NVs toward injured myocardium, we employed a dual modification strategy involving platelet membrane coating and miR-181a-5p loading, creating a nanovesicle termed P-181-NV. This study aimed to investigate the efficacy of P-181-NV in targeted reparative interventions for damaged myocardium and to reveal the underlying mechanisms involved. After successful construction and characteristic analysis of P-181-NV, the in vivo tracking techniques demonstrated a significant enhancement in the targeting capacity of P-181-NV toward the injured myocardium. Moreover, P-181-NV showed marked improvements in cardiac function and remodeling as observed through ultrasound echocardiography and Masson's trichrome staining. Furthermore, P-181-NV significantly augmented myocardial cell viability, angiogenic potential, and the polarization ratio of the anti-inflammatory macrophages. The findings of this study underscore the pivotal role of platelet-membrane-coated and miR-181a-5p modified stem cell nanovesicles in facilitating postmyocardial infarction cardiac repair. By modulating macrophage polarization, P-181-NV offers a promising approach for enhancing the efficacy of targeted reparative interventions for damaged myocardium. These results contribute to our understanding of the potential of nanovesicles as therapeutic agents for cardiac repair and regeneration, presenting avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Dongyue Liu
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Xianyun Wang
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Zhao Liu
- Traditional
Chinese Medicine Processing Technology Innovation Center of Hebei
Province, School of Pharmacy, Hebei University
of Chinese Medicine, Shijiazhuang 050091, China
- International
Joint Research Center on Resource Utilization and Quality Evaluation
of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, China
| | - Lini Ding
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Mei Liu
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Tianshuo Li
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Shasha Zeng
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Mingqi Zheng
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Heart and Metabolism, Shijiazhuang 050031, Hebei Province, China
| | - Le Wang
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Heart and Metabolism, Shijiazhuang 050031, Hebei Province, China
| | - Jun Zhang
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Fan Zhang
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Meng Li
- College
of
Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Gang Liu
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
- Hebei International
Joint Research Center for Structural Heart Disease, Shijiazhuang 050031, Hebei Province, China
| | - Yida Tang
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Department
of Cardiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
2
|
Alvarez-Pardo R, Doron-Mandel E, Albert-Gascó H, Salinas CO, Jovanovic M, Alvarez-Castelao B. Cell-Type-Specific Protein Metabolic Labeling and Identification Using the Methionine Subrogate ANL in Cells Expressing a Mutant Methionyl-tRNA Synthetase. Methods Mol Biol 2025; 2899:111-126. [PMID: 40067620 DOI: 10.1007/978-1-0716-4386-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The study of protein homeostasis in vivo is crucial for our understanding of the functions of cells and organisms. However, complex organisms, such as mammals, are built from heterogeneous tissues and cell-types. These cell-types are often specialized and react in different ways to the same physiological or pathological stimulus. Therefore, a major challenge in proteomics is the identification of proteomes and their behavior in a cell-type-specific manner. In this protocol, we describe a technique to label, enrich, and identify proteins from specific cell types. This technique is based on the expression of a mutant methionyl-tRNA synthetase (MetRS*) for incorporation of a bioorthogonal analog of methionine (ANL) into proteins. ANL can be subsequently bound to an alkyne by click-chemistry, which is used as a bait for protein purification followed by mass spectrometry identification.
Collapse
Affiliation(s)
- Rodrigo Alvarez-Pardo
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Cristina Olmedo Salinas
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Beatriz Alvarez-Castelao
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain.
| |
Collapse
|
3
|
Zhang M, Wan L, Li R, Li X, Zhu T, Lu H. Engineered exosomes for tissue regeneration: from biouptake, functionalization and biosafety to applications. Biomater Sci 2023; 11:7247-7267. [PMID: 37794789 DOI: 10.1039/d3bm01169k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Exosomes are increasingly recognized as important effector molecules that regulate intercellular signaling pathways. Notably, certain types of exosomes can induce therapeutic responses, including cell proliferation, angiogenesis, and tissue repair. The use of exosomes in therapy is a hot spot in current research, especially in regenerative medicine. Despite the therapeutic potential, problems have hindered their success in clinical applications. These shortcomings include low concentration, poor targeting and limited loading capability. To fully realize their therapeutic potential, certain modifications are needed in native exosomes. In the present review, we summarize the exosome modification and functionalization strategies. In addition, we provide an overview of potential clinical applications and highlight the issues associated with the biosafety and biocompatibility of engineered exosomes in applications.
Collapse
Affiliation(s)
- Mu Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Lei Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Ruiqi Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Xiaoling Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Taifu Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Haibin Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
| |
Collapse
|
4
|
Ullah M. The future of bioorthogonal-chemistry for targeting of exosomes in precision medicine. Oncotarget 2022; 13:1303-1304. [PMID: 36473134 PMCID: PMC9725980 DOI: 10.18632/oncotarget.28323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mujib Ullah
- Correspondence to:Mujib Ullah, Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Molecular Medicine Department of Medicine, Stanford University, CA 94305, USA email:
| |
Collapse
|
5
|
Song H, Chen X, Hao Y, Wang J, Xie Q, Wang X. Nanoengineering facilitating the target mission: targeted extracellular vesicles delivery systems design. J Nanobiotechnology 2022; 20:431. [PMID: 36175866 PMCID: PMC9524104 DOI: 10.1186/s12951-022-01638-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
Precision medicine has put forward the proposition of "precision targeting" for modern drug delivery systems. Inspired by techniques from biology, pharmaceutical sciences, and nanoengineering, numerous targeted drug delivery systems have been developed in recent decades. But the large-scale applications of these systems are limited due to unsatisfactory targeting efficiency, cytotoxicity, easy removability, and instability. As such, the natural endogenous cargo delivery vehicle-extracellular vesicles (EVs)-have sparked significant interest for its unique inherent targeting properties, biocompatibility, transmembrane ability, and circulatory stability. The membranes of EVs are enriched for receptors or ligands that interact with target cells, which endows them with inherent targeting mission. However, most of the natural therapeutic EVs face the fate of being cleared by macrophages, resulting in off-target. Therefore, the specificity of natural EVs delivery systems urgently needs to be further improved. In this review, we comprehensively summarize the inherent homing mechanisms of EVs and the effects of the donor cell source and administration route on targeting specificity. We then go over nanoengineering techniques that modify EVs for improving specific targeting, such as source cell alteration and modification of EVs surface. We also highlight the auxiliary strategies to enhance specificity by changing the external environment, such as magnetic and photothermal. Furthermore, contemporary issues such as the lack of a gold standard for assessing targeting efficiency are discussed. This review will provide new insights into the development of precision medicine delivery systems.
Collapse
Affiliation(s)
- Haoyue Song
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China. .,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| |
Collapse
|
6
|
Han C, Qin G. Reporter Systems for Assessments of Extracellular Vesicle Transfer. Front Cardiovasc Med 2022; 9:922420. [PMID: 35722089 PMCID: PMC9198260 DOI: 10.3389/fcvm.2022.922420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer particles naturally released from most if not all cell types to mediate inter-cellular exchange of bioactive molecules. Mounting evidence suggest their important role in diverse pathophysiological processes in the development, growth, homeostasis, and disease. Thus, sensitive and reliable assessments of functional EV cargo transfer from donor to acceptor cells are extremely important. Here, we summarize the methods EV are labeled and their functional transfer in acceptor cells are evaluated by various reporter systems.
Collapse
Affiliation(s)
- Chaoshan Han
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Gangjian Qin,
| |
Collapse
|
7
|
Wang X, Hu S, Li J, Zhu D, Wang Z, Cores J, Cheng K, Liu G, Huang K. Extruded Mesenchymal Stem Cell Nanovesicles Are Equally Potent to Natural Extracellular Vesicles in Cardiac Repair. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55767-55779. [PMID: 34793116 DOI: 10.1021/acsami.1c08044] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Mesenchymal stem cells (MSCs) repair injured tissues mainly through their paracrine actions. One of the important paracrine components of MSC secretomes is the extracellular vesicle (EV). The therapeutic potential of MSC-EVs has been established in various cardiac injury preclinical models. However, the large-scale production of EVs remains a challenge. We sought to develop a scale-up friendly method to generate a large number of therapeutic nanovesicles from MSCs by extrusion. Those extruded nanovesicles (NVs) are miniature versions of MSCs in terms of surface marker expression. The yield of NVs is 20-fold more than that of EVs. In vitro, cell-based assays demonstrated the myocardial protective effects and therapeutic potential of NVs. Intramyocardial delivery of NVs in the injured heart after ischemia-reperfusion led to a reduction in scar sizes and preservation of cardiac functions. Such therapeutic benefits are similar to those injected with natural EVs from the same MSC parental cells. In addition, NV therapy promoted angiogenesis and proliferation of cardiomyocytes in the post-injury heart. In summary, extrusion is a highly efficient method to generate a large quantity of therapeutic NVs that can potentially replace extracellular vesicles in regenerative medicine applications.
Collapse
Affiliation(s)
- Xianyun Wang
- Cell Therapy Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Heart and Metabolism, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, 27607 North Carolina, United States
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, 27607 North Carolina, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, 27607 North Carolina, United States
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, 27607 North Carolina, United States
| | - Junlang Li
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, 27607 North Carolina, United States
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, 27607 North Carolina, United States
| | - Dashuai Zhu
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, 27607 North Carolina, United States
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, 27607 North Carolina, United States
| | - Zhenzhen Wang
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, 27607 North Carolina, United States
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, 27607 North Carolina, United States
| | - Jhon Cores
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, 27607 North Carolina, United States
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, 27607 North Carolina, United States
| | - Ke Cheng
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, 27607 North Carolina, United States
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, 27607 North Carolina, United States
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Heart and Metabolism, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ke Huang
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, 27607 North Carolina, United States
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, 27607 North Carolina, United States
| |
Collapse
|
8
|
Mosquera-Heredia MI, Morales LC, Vidal OM, Barceló E, Silvera-Redondo C, Vélez JI, Garavito-Galofre P. Exosomes: Potential Disease Biomarkers and New Therapeutic Targets. Biomedicines 2021; 9:1061. [PMID: 34440265 PMCID: PMC8393483 DOI: 10.3390/biomedicines9081061] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are extracellular vesicles released by cells, both constitutively and after cell activation, and are present in different types of biological fluid. Exosomes are involved in the pathogenesis of diseases, such as cancer, neurodegenerative diseases, pregnancy disorders and cardiovascular diseases, and have emerged as potential non-invasive biomarkers for the detection, prognosis and therapeutics of a myriad of diseases. In this review, we describe recent advances related to the regulatory mechanisms of exosome biogenesis, release and molecular composition, as well as their role in health and disease, and their potential use as disease biomarkers and therapeutic targets. In addition, the advantages and disadvantages of their main isolation methods, characterization and cargo analysis, as well as the experimental methods used for exosome-mediated drug delivery, are discussed. Finally, we present potential perspectives for the use of exosomes in future clinical practice.
Collapse
Affiliation(s)
- Maria I. Mosquera-Heredia
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia;
| | - Carlos Silvera-Redondo
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia;
| | - Pilar Garavito-Galofre
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| |
Collapse
|