1
|
Cui Y, Leong WH, Zhu G, Liu RB, Li Q. Nanodiamond-Based Spatial-Temporal Deformation Sensing for Cell Mechanics. ACS NANO 2025; 19:13740-13751. [PMID: 40175883 PMCID: PMC12004926 DOI: 10.1021/acsnano.4c15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Precise assessment of the mechanical properties of soft biological systems at the nanoscale is crucial for understanding physiology and pathology and developing relevant drugs. Conventional atomic force microscopy (AFM)-based indentation methods suffer from uncertainties in local tip-sample interactions and the model choice. This can be overcome by adopting spatially resolved nonlocal deformation sensing for mechanical analysis. However, the technique is currently limited to lifeless/static systems due to the inadequate spatial or temporal resolution or difficulties in differentiating the indentation-induced deformation from that associated with live activities and other external perturbations. Here, we develop a dynamic nonlocal deformation sensing approach allowing both spatially and temporally resolved mechanical analysis, which achieves a tens of microsecond time-lag precision, a nanometer vertical deformation precision, and a subhundred nanometer lateral spatial resolution. Using oscillatory nanoindentation and spectroscopic analysis, the method can separate the indentation-caused signal from random noise, enabling a live cell measurement. Using this method, we discover a distance-dependent phase of surface deformation during indentation, leading to the disclosure of surface tension effects (capillarity) in the mechanical response of viscoelastic materials and live cells upon AFM indentation. A viscoelastic model with surface tension is used to enable simultaneous quantification of the viscoelasticity and capillarity of the cell. We show that neglecting surface tension, as in conventional AFM methods, would underestimate the liquid-like characteristics and overestimate the apparent viscoelastic modulus of cells. This study provides exciting opportunities to understand a broad range of elastocapillarity-related interfacial mechanics and mechanobiological processes in live cells.
Collapse
Affiliation(s)
- Yue Cui
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong 999077, China
- Quantum
Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| | - Weng-Hang Leong
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong 999077, China
- Department
of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Guoli Zhu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Ren-Bao Liu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong 999077, China
- Centre
for Quantum Coherence, The Chinese University
of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- State
Key Laboratory of Quantum Information Technologies and Materials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- New
Cornerstone
Science Laboratory, The Chinese University
of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Quan Li
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong 999077, China
- Centre
for Quantum Coherence, The Chinese University
of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- State
Key Laboratory of Quantum Information Technologies and Materials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
2
|
Zhu Y, Chen J, Chen C, Tang R, Xu J, Shi S, Yu X. Deciphering mechanical cues in the microenvironment: from non-malignant settings to tumor progression. Biomark Res 2025; 13:11. [PMID: 39849659 PMCID: PMC11755887 DOI: 10.1186/s40364-025-00727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein. This activation initiates cascades of intrinsic signaling pathways, effectively linking the physical properties of tissues to their physiological and pathophysiological processes like morphogenesis, regeneration, and immunity. This mechanistic insight offers a novel perspective on how the mechanical cues within the tumor microenvironment impact tumor behaviors. While the intricacies of the mechanical tumor microenvironment are yet to be fully elucidated, it exhibits distinct physical attributes from non-malignant tissues, including elevated solid stresses, interstitial hypertension, augmented matrix stiffness, and enhanced viscoelasticity. These traits exert notable influences on tumor progression and treatment responses, enriching our comprehension of the multifaceted nature of the microenvironment. Through this innovative review, we aim to provide a new lens to decipher the mechanical attributes within the tumor microenvironment from non-malignant contexts, broadening our knowledge on how these factors promote or inhibit tumor behaviors, and thus offering valuable insights to identify potential targets for anti-tumor strategies.
Collapse
Affiliation(s)
- Yicheng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Thomas-Chemin O, Séverac C, Moumen A, Martinez-Rivas A, Vieu C, Le Lann MV, Trevisiol E, Dague E. Automated Bio-AFM Generation of Large Mechanome Data Set and Their Analysis by Machine Learning to Classify Cancerous Cell Lines. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44504-44517. [PMID: 39162348 DOI: 10.1021/acsami.4c09218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mechanobiological measurements have the potential to discriminate healthy cells from pathological cells. However, a technology frequently used to measure these properties, i.e., atomic force microscopy (AFM), suffers from its low output and lack of standardization. In this work, we have optimized AFM mechanical measurement on cell populations and developed a technology combining cell patterning and AFM automation that has the potential to record data on hundreds of cells (956 cells measured for publication). On each cell, 16 force curves (FCs) and seven features/FC, constituting the mechanome, were calculated. All of the FCs were then classified using machine learning tools with a statistical approach based on a fuzzy logic algorithm, trained to discriminate between nonmalignant and cancerous cells (training base, up to 120 cells/cell line). The proof of concept was first made on prostate nonmalignant (RWPE-1) and cancerous cell lines (PC3-GFP), then on nonmalignant (Hs 895.Sk) and cancerous (Hs 895.T) skin fibroblast cell lines, and demonstrated the ability of our method to classify correctly 73% of the cells (194 cells in the database/cell line) despite the very high degree of similarity of the whole set of measurements (79-100% similarity).
Collapse
Affiliation(s)
| | - Childérick Séverac
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31100 Toulouse, France
| | | | | | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
| | | | - Emmanuelle Trevisiol
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
| |
Collapse
|
4
|
Mendová K, Otáhal M, Drab M, Daniel M. Size Matters: Rethinking Hertz Model Interpretation for Cell Mechanics Using AFM. Int J Mol Sci 2024; 25:7186. [PMID: 39000293 PMCID: PMC11241038 DOI: 10.3390/ijms25137186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Cell mechanics are a biophysical indicator of cell state, such as cancer metastasis, leukocyte activation, and cell cycle progression. Atomic force microscopy (AFM) is a widely used technique to measure cell mechanics, where the Young modulus of a cell is usually derived from the Hertz contact model. However, the Hertz model assumes that the cell is an elastic, isotropic, and homogeneous material and that the indentation is small compared to the cell size. These assumptions neglect the effects of the cytoskeleton, cell size and shape, and cell environment on cell deformation. In this study, we investigated the influence of cell size on the estimated Young's modulus using liposomes as cell models. Liposomes were prepared with different sizes and filled with phosphate buffered saline (PBS) or hyaluronic acid (HA) to mimic the cytoplasm. AFM was used to obtain the force indentation curves and fit them to the Hertz model. We found that the larger the liposome, the lower the estimated Young's modulus for both PBS-filled and HA-filled liposomes. This suggests that the Young modulus obtained from the Hertz model is not only a property of the cell material but also depends on the cell dimensions. Therefore, when comparing or interpreting cell mechanics using the Hertz model, it is essential to account for cell size.
Collapse
Affiliation(s)
- Katarína Mendová
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 16000 Prague, Czech Republic;
| | - Martin Otáhal
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Náměstí Sítná 3105, 27201 Kladno, Czech Republic;
| | - Mitja Drab
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000 Ljubljana, Slovenia;
| | - Matej Daniel
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 16000 Prague, Czech Republic;
| |
Collapse
|
5
|
Kural MH, Djakbarova U, Cakir B, Tanaka Y, Chan ET, Arteaga Muniz VI, Madraki Y, Qian H, Park J, Sewanan LR, Park IH, Niklason LE, Kural C. Mechano-inhibition of endocytosis sensitizes cancer cells to Fas-induced Apoptosis. Cell Death Dis 2024; 15:440. [PMID: 38909035 PMCID: PMC11193792 DOI: 10.1038/s41419-024-06822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The transmembrane death receptor Fas transduces apoptotic signals upon binding its ligand, FasL. Although Fas is highly expressed in cancer cells, insufficient cell surface Fas expression desensitizes cancer cells to Fas-induced apoptosis. Here, we show that the increase in Fas microaggregate formation on the plasma membrane in response to the inhibition of endocytosis sensitizes cancer cells to Fas-induced apoptosis. We used a clinically accessible Rho-kinase inhibitor, fasudil, that reduces endocytosis dynamics by increasing plasma membrane tension. In combination with exogenous soluble FasL (sFasL), fasudil promoted cancer cell apoptosis, but this collaborative effect was substantially weaker in nonmalignant cells. The combination of sFasL and fasudil prevented glioblastoma cell growth in embryonic stem cell-derived brain organoids and induced tumor regression in a xenograft mouse model. Our results demonstrate that sFasL has strong potential for apoptosis-directed cancer therapy when Fas microaggregate formation is augmented by mechano-inhibition of endocytosis.
Collapse
Affiliation(s)
- Mehmet H Kural
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | | | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, H1T 2M4, Canada
| | - Emily T Chan
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Hong Qian
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
- Humacyte Inc., Durham, NC, 27213, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Lorenzo R Sewanan
- Department of Internal Medicine, Columbia University, New York, NY, 10032, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Laura E Niklason
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Siboni H, Ruseska I, Zimmer A. Atomic Force Microscopy for the Study of Cell Mechanics in Pharmaceutics. Pharmaceutics 2024; 16:733. [PMID: 38931854 PMCID: PMC11207904 DOI: 10.3390/pharmaceutics16060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cell mechanics is gaining attraction in drug screening, but the applicable methods have not yet become part of the standardized norm. This review presents the current state of the art for atomic force microscopy, which is the most widely available method. The field is first motivated as a new way of tracking pharmaceutical effects, followed by a basic introduction targeted at pharmacists on how to measure cellular stiffness. The review then moves on to the current state of the knowledge in terms of experimental results and supplementary methods such as fluorescence microscopy that can give relevant additional information. Finally, rheological approaches as well as the theoretical interpretations are presented before ending on additional methods and outlooks.
Collapse
Affiliation(s)
- Henrik Siboni
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
- Single Molecule Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Ivana Ruseska
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
| | - Andreas Zimmer
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
| |
Collapse
|
7
|
Feng J, Sun Q, Chen P, Ren K, Zhang Y, Shi Y, Gao S, Song Z, Wang J, Liao F, Han D. Characterization of Cancer Cell Mechanics by Measuring Active Deformation Behavior. SMALL METHODS 2024; 8:e2300520. [PMID: 37775303 DOI: 10.1002/smtd.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/17/2023] [Indexed: 10/01/2023]
Abstract
Active deformation behavior reflects cell structural dynamics adapting to varying environmental constraints during malignancy progression. In most cases, cell mechanics is characterized by modeling using static equilibrium systems, which fails to comprehend cell deformation behavior leading to inaccuracies in distinguishing cancer cells from normal cells. Here, a method is introduced to measure the active deformation behavior of cancer cells using atomic force microscopy (AFM) and the newly developed deformation behavior cytometry (DBC). During the measurement, cells are deformed and allows a long timescale relaxation (≈5 s). Two parameters are derived to represent deformation behavior: apparent Poisson's ratio for adherent cells, which is measured with AFM and refers to the ratio of the lateral strain to the longitudinal strain of the cell, and shape recovery for suspended cells, which is measured with DBC. Active deformation behavior defines cancer cell mechanics better than traditional mechanical parameters (e.g., stiffness, diffusion, and viscosity). Additionally, aquaporins are essential for promoting the deformation behavior, while the actin cytoskeleton acts as a downstream effector. Therefore, the potential application of the cancer cell active deformation behavior as a biomechanical marker or therapeutic target in cancer treatment should be evaluated.
Collapse
Affiliation(s)
- Jiantao Feng
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Quanmei Sun
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Peipei Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Keli Ren
- The Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyuan Zhang
- Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yahong Shi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Songkun Gao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Zhiwei Song
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jigang Wang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fulong Liao
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
8
|
Ren K, Feng J, Bi H, Sun Q, Li X, Han D. AFM-Based Poroelastic@Membrane Analysis of Cells and its Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303610. [PMID: 37403276 DOI: 10.1002/smll.202303610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Indexed: 07/06/2023]
Abstract
Cell mechanics is an emerging field of research for translational medicine. Here, the cell is modeled as poroelastic cytoplasm wrapped by tensile membrane (poroelastic@membrane model) and is characterized by the atomic force microscopy (AFM). The parameters of cytoskeleton network modulus EC , cytoplasmic apparent viscosity ηC , and cytoplasmic diffusion coefficient DC are used to describe the mechanical behavior of cytoplasm, and membrane tension γ is used to evaluate the cell membrane. Poroelastic@membrane analysis of breast cells and urothelial cells show that non-cancer cells and cancer cells have different distribution regions and distribution trends in the four-dimensional space composed of EC , ηC . From non-cancer to cancer cells, there is often a trend of γ, EC , ηC decreases and DC increases. Patients with urothelial carcinoma at different malignant stages can be distinguished at high sensitivity and specificity by analyzing the urothelial cells from tissue or urine. However, sampling directly from tumor tissues is an invasive method, may lead to undesirable consequences. Thus, AFM-based poroelastic@membrane analysis of urothelial cells from urine may provide a non-invasive and no-bio-label method to detecting urothelial carcinoma.
Collapse
Affiliation(s)
- Keli Ren
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Haidian, Beijing, 100191, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou Distric, Beijing, 100190, China
| | - Jiantao Feng
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16, Nanxiao street, Dongzhimen, Dongcheng, Beijing, 100700, China
| | - Hai Bi
- Department of Urology, Peking University Third Hospital, 49 North Garden Rd., Haidian, Beijing, 100191, China
| | - Quanmei Sun
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Haidian, Beijing, 100191, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou Distric, Beijing, 100190, China
| | - Xiang Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Haidian, Beijing, 100191, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou Distric, Beijing, 100190, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Haidian, Beijing, 100191, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou Distric, Beijing, 100190, China
| |
Collapse
|
9
|
Herrera-Reinoza N, Tortelli Junior TC, Teixeira FDS, Chammas R, Salvadori MC. Role of galectin-3 in the elastic response of radial growth phase melanoma cancer cells. Microsc Res Tech 2023; 86:1353-1362. [PMID: 37070727 DOI: 10.1002/jemt.24328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Melanoma is originated from the malignant transformation of the melanocytes and is characterized by a high rate of invasion, the more serious stage compromising deeper layers of the skin and eventually leading to the metastasis. A high mortality due to melanoma lesion persists because most of melanoma lesions are detected in advanced stages, which decreases the chances of survival. The identification of the principal mechanics implicated in the development and progression of melanoma is essential to devise new early diagnosis strategies. Cell mechanics is related with a lot of cellular functions and processes, for instance motility, differentiation, migration and invasion. In particular, the elastic modulus (Young's modulus) is a very explored parameter to describe the cell mechanical properties; most cancer cells reported in the literature smaller elasticity modulus. In this work, we show that the elastic modulus of melanoma cells lacking galectin-3 is significantly lower than those of melanoma cells expressing galectin-3. More interestingly, the gradient of elastic modulus in cells from the nuclear region towards the cell periphery is more pronounced in shGal3 cells. RESEARCH HIGHLIGHTS: AFM imaging and force spectroscopy were used to investigate the morphology and elasticity properties of healthy HaCaT cells and melanoma cells WM1366, with (shSCR) and without (shGal3) expression of galectin-3. It is shown the effect of galectin-3 protein on the elastic properties of cells: the cells without expression of galectin-3 presents lower elastic modulus. By the results, we suggest here that galectin-3 could be used as an effective biomarker of malignancy in both melanoma diagnostic and prognosis.
Collapse
Affiliation(s)
| | | | | | - Roger Chammas
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Gu Y, Zhang C, Zhang Y, Tan W, Yu X, Zhang T, Liu L, Zhao Y, Hao L. A Review of the Development and Challenges of Cell Mechanical Models. IEEE Trans Nanobioscience 2023; 22:673-684. [PMID: 37018687 DOI: 10.1109/tnb.2023.3235868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell models can express a variety of cell information, including mechanical properties, electrical properties, and chemical properties. Through the analysis of these properties, we can fully understand the physiological state of cells. As such, cell modeling has gradually become a topic of great interest, and a number of cell models have been established over the last few decades. In this paper, the development of various cell mechanical models has been systematically reviewed. First, continuum theoretical models, which were established by ignoring cell structures, are summarized, including the cortical membrane droplet model, solid model, power series structure damping model, multiphase model, and finite element model. Next, microstructural models based on the structure and function of cells are summarized, including the tension integration model, porous solid model, hinged cable net model, porous elastic model, energy dissipation model, and muscle model. What's more, from multiple viewpoints, the strengths and weaknesses of each cell mechanical model have been analyzed in detail. Finally, the potential challenges and applications in the development of cell mechanical models are discussed. This paper contributes to the development of different fields, such as biological cytology, drug therapy, and bio-syncretic robots.
Collapse
|
11
|
Ma S, Wu J, Liu Z, He R, Wang Y, Liu L, Wang T, Wang W. Quantitative characterization of cell physiological state based on dynamical cell mechanics for drug efficacy indication. J Pharm Anal 2023; 13:388-402. [PMID: 37181289 PMCID: PMC10173291 DOI: 10.1016/j.jpha.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Cell mechanics is essential to cell development and function, and its dynamics evolution reflects the physiological state of cells. Here, we investigate the dynamical mechanical properties of single cells under various drug conditions, and present two mathematical approaches to quantitatively characterizing the cell physiological state. It is demonstrated that the cellular mechanical properties upon the drug action increase over time and tend to saturate, and can be mathematically characterized by a linear time-invariant dynamical model. It is shown that the transition matrices of dynamical cell systems significantly improve the classification accuracies of the cells under different drug actions. Furthermore, it is revealed that there exists a positive linear correlation between the cytoskeleton density and the cellular mechanical properties, and the physiological state of a cell in terms of its cytoskeleton density can be predicted from its mechanical properties by a linear regression model. This study builds a relationship between the cellular mechanical properties and the cellular physiological state, adding information for evaluating drug efficacy.
Collapse
|
12
|
Study on high-speed atomic force microscope system with ultra-short mechanical loop. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
14
|
Nguyen HL, Man VH, Li MS, Derreumaux P, Wang J, Nguyen PH. Elastic moduli of normal and cancer cell membranes revealed by molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:6225-6237. [PMID: 35229839 DOI: 10.1039/d1cp04836h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent studies indicate that there are mechanical differences between normal cells and cancer cells. Because the cell membrane takes part in a variety of vital processes, we test the hypothesis of whether or not two fundamental alterations in the cell membrane, i.e., the overexpression of phosphatidylserine lipids in the outer leaflet and a reduction in cholesterol concentration, could cause the softening in cancer cells. Adopting ten models of normal and cancer cell membranes, we carry out 1 μs all-atom molecular dynamics simulations to compare the structural properties and elasticity properties of two membrane types. We find that the overexpression of the phosphatidylserine lipids in the outer leaflet does not significantly alter the area per lipid, the membrane thickness, the lipid order parameters and the elasticity moduli of the cancer membranes. However, a reduction in the cholesterol concentration leads to clear changes in those quantities, especially decreases in the bending, tilt and twist moduli. This implies that the reduction of cholesterol concentration in the cancer membranes could contribute to the softening of cancer cells.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.,Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Philippe Derreumaux
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Phuong H Nguyen
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
15
|
Wang XY, Lv J, Hong Q, Zhou ZR, Li DW, Qian RC. Nanopipette-Based Nanosensor for Label-Free Electrochemical Monitoring of Cell Membrane Rupture under H 2O 2 Treatment. Anal Chem 2021; 93:13967-13973. [PMID: 34623143 DOI: 10.1021/acs.analchem.1c03313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
H2O2 is an essential signaling molecule in living cells that can cause direct damage to lipids, proteins, and DNA, resulting in cell membrane rupture. However, current studies mostly focus on probe-based sensing of intracellular H2O2, and these methods usually require sophisticated probe synthesis and instruments. In particular, local H2O2 treatment induces cell membrane rupture, but the level of cell membrane destruction is unknown because the mechanical properties of the cell membrane are difficult to accurately determine. Therefore, highly sensitive and label-free methods are required to measure and reflect mechanical changes in the cell membrane. Here, using an ultrasmall quartz nanopipette with a tip diameter less than 90 nm as a nanosensor, label-free and noninvasive electrochemical single-cell measurement is achieved for real-time monitoring of cell membrane rupture under H2O2 treatment. By spatially controlling the nanopipette tip to precisely approach a specific location on the membrane of a single living cell, stable cyclic membrane oscillations are observed under a constant direct current voltage. Specifically, upon nanopipette advancement, the mechanical status of the cell membrane can be sensibly displayed by continuous current versus time traces. The electrical signals are collected and processed, ultimately revealing the mechanical properties of the cell membrane and the degree of cell apoptosis. This nanopipette-based nanosensor paves the way for developing a facile, label-free, and noninvasive strategy to assay the mechanical properties of the cell membrane during external stimulation at the single-cell level.
Collapse
Affiliation(s)
- Xiao-Yuan Wang
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qin Hong
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
16
|
Dalton CJ, Lemmon CA. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021; 10:2443. [PMID: 34572092 PMCID: PMC8471655 DOI: 10.3390/cells10092443] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) plays a key role as both structural scaffold and regulator of cell signal transduction in tissues. In times of ECM assembly and turnover, cells upregulate assembly of the ECM protein, fibronectin (FN). FN is assembled by cells into viscoelastic fibrils that can bind upward of 40 distinct growth factors and cytokines. These fibrils play a key role in assembling a provisional ECM during embryonic development and wound healing. Fibril assembly is also often upregulated during disease states, including cancer and fibrotic diseases. FN fibrils have unique mechanical properties, which allow them to alter mechanotransduction signals sensed and relayed by cells. Binding of soluble growth factors to FN fibrils alters signal transduction from these proteins, while binding of other ECM proteins, including collagens, elastins, and proteoglycans, to FN fibrils facilitates the maturation and tissue specificity of the ECM. In this review, we will discuss the assembly of FN fibrils from individual FN molecules; the composition, structure, and mechanics of FN fibrils; the interaction of FN fibrils with other ECM proteins and growth factors; the role of FN in transmitting mechanobiology signaling events; and approaches for studying the mechanics of FN fibrils.
Collapse
Affiliation(s)
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA 23284, USA;
| |
Collapse
|