1
|
Cheon J, Kim B, Lee J, Shin J, Kim TH. Functions and Clinical Applications of Extracellular Vesicles in T H2 Cell-Mediated Airway Inflammatory Diseases: A Review. Int J Mol Sci 2024; 25:9455. [PMID: 39273399 PMCID: PMC11394744 DOI: 10.3390/ijms25179455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Type 2 airway inflammation (T2AI), driven by type 2 innate lymphoid and CD4+ T helper 2 cells, leads to various diseases and conditions, such as chronic rhinosinusitis with nasal polyps, allergic rhinitis, and asthma. Emerging evidence suggests the involvement of extracellular vesicles (EVs) in these diseases. In this review, we describe the immunological T2AI pathogenic mechanisms, outline EV characteristics, and highlight their applications in the diagnosis and treatment of T2AI. An extensive literature search was conducted using appropriate strategies to identify relevant articles from various online databases. EVs in various biological samples showed disease-specific characteristics for chronic rhinosinusitis with nasal polyps, allergic rhinitis, and asthma, with some demonstrating therapeutic effects against these conditions. However, most studies have been limited to in vitro and animal models, highlighting the need for further clinical research on the diagnostic and therapeutic applications of EVs.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Juhyun Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jaemin Shin
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Puletic M, Velikic G, Maric DM, Supic G, Maric DL, Radovic N, Avramov S, Vojvodic D. Clinical Efficacy of Extracellular Vesicle Therapy in Periodontitis: Reduced Inflammation and Enhanced Regeneration. Int J Mol Sci 2024; 25:5753. [PMID: 38891939 PMCID: PMC11171522 DOI: 10.3390/ijms25115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Periodontitis, a prevalent inflammatory condition, affects the supporting structures of teeth, leading to significant oral health challenges. Traditional treatments have primarily focused on mechanical debridement, antimicrobial therapy, and surgery, which often fail to restore lost periodontal structures. Emerging as a novel approach in regenerative medicine, extracellular vesicle (EV) therapy, including exosomes, leverages nano-sized vesicles known for facilitating intercellular communication and modulating physiological and pathological processes. This study is a proof-of-concept type that evaluates the clinical efficacy of EV therapy as a non-surgical treatment for stage I-III periodontitis, focusing on its anti-inflammatory and regenerative potential. The research involved seven patients undergoing the therapy, and seven healthy individuals. Clinical parameters, including the plaque index, bleeding on probing, probing depth, and attachment level, were assessed alongside cytokine levels in the gingival crevicular fluid. The study found significant improvements in clinical parameters, and a marked reduction in pro-inflammatory cytokines post-treatment, matching the levels of healthy subjects, underscoring the therapy's ability to not only attenuate inflammation and enhance tissue regeneration, but also highlighting its potential in restoring periodontal health. This investigation illuminates the promising role of EV therapy in periodontal treatment, advocating for a shift towards therapies that halt disease progression and promote structural and functional restoration of periodontal tissues.
Collapse
Affiliation(s)
- Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia; (M.P.); (D.M.M.); (N.R.); (S.A.)
| | - Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia; (M.P.); (D.M.M.); (N.R.); (S.A.)
- Department for Research and Development, Clinic Orto MD-Parks Hospital, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nikola Radovic
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia; (M.P.); (D.M.M.); (N.R.); (S.A.)
| | - Stevan Avramov
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia; (M.P.); (D.M.M.); (N.R.); (S.A.)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Wang F, Jiang L, Liu P, Jiang Y. Mechanism of adipose tissue-derived stromal cell-extracellular vesicles in treating oral submucous fibrosis by blocking the TGF-β1/Smad3 pathway via the miR-760-3p/IGF1R axis. BIOMOLECULES & BIOMEDICINE 2023; 24:827-839. [PMID: 38059910 PMCID: PMC11293217 DOI: 10.17305/bb.2023.9944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Oral submucous fibrosis (OSF) is a prevalent chronic condition, and understanding its pathogenesis is crucial for developing effective therapeutic strategies. This study explores the potential of adipose tissue-derived stromal cell-extracellular vesicles (ADSC-EVs) in mitigating OSF and investigates the underlying molecular mechanisms. OSF was induced in mice by arecoline feeding. Adipose tissue-derived stromal cells (ADSCs), fibrotic buccal mucosal fibroblasts (fBMFs) isolated from OSF mice, and ADSC-EVs were comprehensively characterized. The treatment effects of extracellular vesicles (EVs) and pcDNA3.1-IGF1R on fBMF proliferation, migration, and invasion were assessed using Cell Counting Kit-8 (CCK-8) assay, transwell assay, and flow cytometry assay. The expression levels of alpha-smooth muscle actin (α-SMA), collagen I, collagen III, and insulin-like growth factor 1 receptor (IGF1R) were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. The interaction between miR-760-3p and IGF1R was investigated. In fBMFs and OSF mice treated with a miR-760-3p inhibitor and/or EVs, the expression patterns of miR-760-3p, IGF1R, and proteins related to the TGF-β1/Smad3 pathway were determined. ADSC-EVs demonstrated the ability to upregulate miR-760-3p, impede cell proliferation, migration, and invasion, and reduce α-SMA, collagen I, and collagen III levels in fBMFs. The expression of miR-760-3p was diminished in ADSC-EVs treated with a miR-760-3p inhibitor. However, silencing miR-760-3p or overexpressing IGF1R partially counteracted the beneficial effects of ADSC-EVs on fBMF fibrosis. miR-760-3p directly targets IGF1R. Significantly, ADSC-EVs exert their suppressive effects on the TGF-β1/Smad3 pathway through the miR-760-3p/IGF1R axis. In summary, ADSC-EVs, by transferring miR-760-3p and inhibiting IGF1R expression, effectively block the TGF-β1/Smad3 pathway, thereby alleviating fibrosis in fBMFs and preventing the progression of OSF.
Collapse
Affiliation(s)
- Fengcong Wang
- Department of Orthodontics, Jinan Stomatological Hospital, Shandong, China
| | - Li Jiang
- Department of Endodontics, Jinan Stomatological Hospital, Shandong, China
| | - Ping Liu
- Department of Orthodontics, Jinan Stomatological Hospital, Shandong, China
| | - Yanjun Jiang
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Zhejiang, China
| |
Collapse
|
4
|
Cheng W, Xu C, Su Y, Shen Y, Yang Q, Zhao Y, Zhao Y, Liu Y. Engineered Extracellular Vesicles: A potential treatment for regeneration. iScience 2023; 26:108282. [PMID: 38026170 PMCID: PMC10651684 DOI: 10.1016/j.isci.2023.108282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Extracellular vesicles (EVs) play a critical role in various physiological and pathological processes. EVs have gained recognition in regenerative medicine due to their biocompatibility and low immunogenicity. However, the practical application of EVs faces challenges such as limited targeting ability, low yield, and inadequate therapeutic effects. To overcome these limitations, engineered EVs have emerged. This review aims to comprehensively analyze the engineering methods utilized for modifying donor cells and EVs, with a focus on comparing the therapeutic potential between engineered and natural EVs. Additionally, it aims to investigate the specific cell effects that play a crucial role in promoting repair and regeneration, while also exploring the underlying mechanisms involved in the field of regenerative medicine.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Chenyu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yuran Su
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Youqing Shen
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Yang
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yanhong Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Liu
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| |
Collapse
|
5
|
Jiao K, Liu C, Basu S, Raveendran N, Nakano T, Ivanovski S, Han P. Bioprinting extracellular vesicles as a "cell-free" regenerative medicine approach. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:218-239. [PMID: 39697984 PMCID: PMC11648406 DOI: 10.20517/evcna.2023.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 12/20/2024]
Abstract
Regenerative medicine involves the restoration of tissue or organ function via the regeneration of these structures. As promising regenerative medicine approaches, either extracellular vesicles (EVs) or bioprinting are emerging stars to regenerate various tissues and organs (i.e., bone and cardiac tissues). Emerging as highly attractive cell-free, off-the-shelf nanotherapeutic agents for tissue regeneration, EVs are bilayered lipid membrane particles that are secreted by all living cells and play a critical role as cell-to-cell communicators through an exchange of EV cargos of protein, genetic materials, and other biological components. 3D bioprinting, combining 3D printing and biology, is a state-of-the-art additive manufacturing technology that uses computer-aided processes to enable simultaneous patterning of 3D cells and tissue constructs in bioinks. Although developing an effective system for targeted EVs delivery remains challenging, 3D bioprinting may offer a promising means to improve EVs delivery efficiency with controlled loading and release. The potential application of 3D bioprinted EVs to regenerate tissues has attracted attention over the past few years. As such, it is timely to explore the potential and associated challenges of utilizing 3D bioprinted EVs as a novel "cell-free" alternative regenerative medicine approach. In this review, we describe the biogenesis and composition of EVs, and the challenge of isolating and characterizing small EVs - sEVs (< 200 nm). Common 3D bioprinting techniques are outlined and the issue of bioink printability is explored. After applying the following search strategy in PubMed: "bioprinted exosomes" or "3D bioprinted extracellular vesicles", eight studies utilizing bioprinted EVs were found that have been included in this scoping review. Current studies utilizing bioprinted sEVs for various in vitro and in vivo tissue regeneration applications, including angiogenesis, osteogenesis, immunomodulation, chondrogenesis and myogenesis, are discussed. Finally, we explore the current challenges and provide an outlook on possible refinements for bioprinted sEVs applications.
Collapse
Affiliation(s)
- Kexin Jiao
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Brisbane 4006, QLD, Australia
| | - Chun Liu
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
| | - Saraswat Basu
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
| | - Nimal Raveendran
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Brisbane 4006, QLD, Australia
| | - Tamaki Nakano
- Hokkaido University, Institute for Catalysis (ICAT), N21 W10, Kita-ku, Sapporo 001-0021, Japan
| | - Sašo Ivanovski
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Brisbane 4006, QLD, Australia
| | - Pingping Han
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, Brisbane 4006, QLD, Australia
- The University of Queensland, Faculty of Health and Behavioural Sciences, School of Dentistry, Brisbane 4006, QLD, Australia
| |
Collapse
|
6
|
Mechanisms and clinical application potential of mesenchymal stem cells-derived extracellular vesicles in periodontal regeneration. Stem Cell Res Ther 2023; 14:26. [PMID: 36782259 PMCID: PMC9925224 DOI: 10.1186/s13287-023-03242-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Periodontitis is a high prevalence oral disease which damages both the hard and soft tissue of the periodontium, resulting in tooth mobility and even loss. Existing clinical treatment methods cannot fully achieve periodontal tissue regeneration; thus, due to the unique characteristics of mesenchymal stem cells (MSCs), they have become the focus of attention and may be the most promising new therapy for periodontitis. Accumulating evidence supports the view that the role of MSCs in regenerative medicine is mainly achieved by the paracrine pathway rather than direct proliferation and differentiation at the injured site. Various cells release lipid-enclosed particles known as extracellular vesicles (EVs), which are rich in bioactive substances. In periodontitis, EVs play a pivotal role in regulating the biological functions of both periodontal tissue cells and immune cells, as well as the local microenvironment, thereby promoting periodontal injury repair and tissue regeneration. As a cell-free therapy, MSCs-derived extracellular vesicles (MSC-EVs) have some preponderance on stability, immune rejection, ethical supervision, and other problems; therefore, they may have a broad clinical application prospect. Herein, we gave a brief introduction to MSC-EVs and focused on their mechanisms and clinical application in periodontal regeneration.
Collapse
|
7
|
Lai H, Li J, Kou X, Mao X, Zhao W, Ma L. Extracellular Vesicles for Dental Pulp and Periodontal Regeneration. Pharmaceutics 2023; 15:282. [PMID: 36678909 PMCID: PMC9862817 DOI: 10.3390/pharmaceutics15010282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bound particles derived from their original cells, which play critical roles in intercellular communication through their cargoes, including protein, lipids, and nucleic acids. According to their biogenesis and release pathway, EVs can be divided into three categories: apoptotic vesicles (ApoVs), microvesicles (MVs), and small EVs (sEVs). Recently, the role of EVs in oral disease has received close attention. In this review, the main characteristics of EVs are described, including their classification, biogenesis, biomarkers, and components. Moreover, the therapeutic mechanism of EVs in tissue regeneration is discussed. We further summarize the current status of EVs in pulp/periodontal tissue regeneration and discuss the potential mechanisms. The therapeutic potential of EVs in pulp and periodontal regeneration might involve the promotion of tissue regeneration and immunomodulatory capabilities. Furthermore, we highlight the current challenges in the translational use of EVs. This review would provide valuable insights into the potential therapeutic strategies of EVs in dental pulp and periodontal regeneration.
Collapse
Affiliation(s)
- Hongbin Lai
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jiaqi Li
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wei Zhao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lan Ma
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
8
|
Deng DK, Zhang JJ, Gan D, Zou JK, Wu RX, Tian Y, Yin Y, Li X, Chen FM, He XT. Roles of extracellular vesicles in periodontal homeostasis and their therapeutic potential. J Nanobiotechnology 2022; 20:545. [PMID: 36585740 PMCID: PMC9801622 DOI: 10.1186/s12951-022-01757-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Periodontal tissue is a highly dynamic and frequently stimulated area where homeostasis is easily destroyed, leading to proinflammatory periodontal diseases. Bacteria-bacteria and cell-bacteria interactions play pivotal roles in periodontal homeostasis and disease progression. Several reviews have comprehensively summarized the roles of bacteria and stem cells in periodontal homeostasis. However, they did not describe the roles of extracellular vesicles (EVs) from bacteria and cells. As communication mediators evolutionarily conserved from bacteria to eukaryotic cells, EVs secreted by bacteria or cells can mediate interactions between bacteria and their hosts, thereby offering great promise for the maintenance of periodontal homeostasis. This review offers an overview of EV biogenesis, the effects of EVs on periodontal homeostasis, and recent advances in EV-based periodontal regenerative strategies. Specifically, we document the pathogenic roles of bacteria-derived EVs (BEVs) in periodontal dyshomeostasis, focusing on plaque biofilm formation, immune evasion, inflammatory pathway activation and tissue destruction. Moreover, we summarize recent advancements in cell-derived EVs (CEVs) in periodontal homeostasis, emphasizing the multifunctional biological effects of CEVs on periodontal tissue regeneration. Finally, we discuss future challenges and practical perspectives for the clinical translation of EV-based therapies for periodontitis.
Collapse
Affiliation(s)
- Dao-Kun Deng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiu-Jiu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dian Gan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie-Kang Zou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yi Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
9
|
Pendse S, Vaidya A, Kale V. Clinical applications of pluripotent stem cells and their derivatives: current status and future perspectives. Regen Med 2022; 17:677-690. [PMID: 35703035 DOI: 10.2217/rme-2022-0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) can differentiate into specific cell types and thus hold great promise in regenerative medicine to treat certain diseases. Hence, several studies have been performed harnessing their salutary properties in regenerative medicine. Despite several challenges associated with the clinical applications of PSCs, worldwide efforts are harnessing their potential in the regeneration of damaged tissues. Several clinical trials have been performed using PSCs or their derivatives. However, the delay in publishing the data obtained in the trials has led to a lack of awareness about their outcomes, resulting in apprehension about cellular therapies. Here, the authors review the published papers containing data from recent clinical trials done with PSCs. PSC-derived extracellular vesicles hold great potential in regenerative therapy. Since published papers containing the data obtained in clinical trials on PSC-derived extracellular vesicles are not available yet, the authors have reviewed some of the pre-clinical work done with them.
Collapse
Affiliation(s)
- Shalmali Pendse
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, 412115, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, 412115, India
| |
Collapse
|
10
|
Lin H, Chen H, Zhao X, Chen Z, Zhang P, Tian Y, Wang Y, Ding T, Wang L, Shen Y. Advances in mesenchymal stem cell conditioned medium-mediated periodontal tissue regeneration. J Transl Med 2021; 19:456. [PMID: 34736500 PMCID: PMC8567704 DOI: 10.1186/s12967-021-03125-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that leads to the destruction of both soft and hard periodontal tissues. Complete periodontal regeneration in clinics using the currently available treatment approaches is still a challenge. Mesenchymal stem cells (MSCs) have shown promising potential to regenerate periodontal tissue in various preclinical and clinical studies. The poor survival rate of MSCs during in vivo transplantation and host immunogenic reaction towards MSCs are the main drawbacks of direct use of MSCs in periodontal tissue regeneration. Autologous MSCs have limited sources and possess patient morbidity during harvesting. Direct use of allogenic MSCs could induce host immune reaction. Therefore, the MSC-based indirect treatment approach could be beneficial for periodontal regeneration in clinics. MSC culture conditioned medium (CM) contains secretomes that had shown immunomodulatory and tissue regenerative potential in pre-clinical and clinical studies. MSC-CM contains a cocktail of growth factors, cytokines, chemokines, enzymes, and exosomes, extracellular vesicles, etc. MSC-CM-based indirect treatment has the potential to eliminate the drawbacks of direct use of MSCs for periodontal tissue regeneration. MSC-CM holds the tremendous potential of bench-to-bed translation in periodontal regeneration applications. This review focuses on the accumulating evidence indicating the therapeutic potential of the MSC-CM in periodontal regeneration-related pre-clinical and clinical studies. Recent advances on MSC-CM-based periodontal regeneration, existing challenges, and prospects are well summarized as guidance to improve the effectiveness of MSC-CM on periodontal regeneration in clinics.
Collapse
Affiliation(s)
- Hongbing Lin
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Huishan Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xuetao Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Zhen Chen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Peipei Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yue Tian
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yawei Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Tong Ding
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|