1
|
Ge Y, Zhao B, Li M, Li Z, Bai S, Zhang Q, Wang X, Wang G, Cheng J, Wang X. Experimental and network pharmacology certify itraconazole mitigates fluorouracil-induced intestinal damage by inhibiting mTOR-mediated intestinal senescence. Toxicol Appl Pharmacol 2025; 502:117404. [PMID: 40449753 DOI: 10.1016/j.taap.2025.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/13/2025] [Accepted: 05/22/2025] [Indexed: 06/03/2025]
Abstract
Fluorouracil (Fu) is one of the first-line drugs for colorectal cancer, but severe intestinal damage limits its clinical application. The intestinal damage caused by Fu is closely related to cellular senescence. Itraconazole (Itr) is primarily used to treat fungal infections. At present, the effects of Itr on intestinal senescence and damage have not been the subject of extensive study. In this study, NCM460 cells were utilized to establish a model of Fu-induced senescence and inflammation. Treatment of NCM460 cells with Fu resulted in increased senescence-associated beta-galactosidase (SA-β-Gal) activity, elevated p21 expression, and the upregulation of p16 and p53. Additionally, there was enhanced Senescence-Associated Secretory Phenotype (SASP) and an increase in inflammatory factors IL-1β and IL-6. The present study demonstrated that the treatment of Itr effectively alleviated the changes caused by Fu in NCM460 cells. Moreover, it was observed that Itr was efficacious in mitigating intestinal damage induced by Fu in Balb/c mice. Network pharmacology analysis and experimental validation identified the mTOR signaling pathway as a key target of Itr in treating Fu-induced intestinal aging and inflammation. Our findings demonstrate that Itr significantly inhibited the mTOR pathway, while the mTOR activator MHY1485 restored mTOR activity and promoted senescence. Moreover, it was observed that Itr could effectively enhance the tumor-killing effect of Fu in HCT116 and SW480 cells, as well as in Balb/c nude mice. In conclusion, Itr is a promising candidate for reducing intestinal side effects and enhancing Fu's efficacy in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yuchen Ge
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Department of Neurosurgery, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Bingxiang Zhao
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Department of Neurosurgery, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Man Li
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Department of Neurosurgery, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Zhenglin Li
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Shirui Bai
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Qishan Zhang
- School of Basic Medicine, Tianjin Medical University, Tianjin 300203, China
| | - Xue Wang
- Department of Neurosurgery, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Guangming Wang
- Department of Neurosurgery, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Jianjie Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China.
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
2
|
Anand J, Droby G, Joseph S, Patel U, Zhang X, Klomp J, Der C, Purvis J, Wolff S, Bowser J, Vaziri C. TRIP13 protects pancreatic cancer cells against intrinsic and therapy-induced DNA replication stress. NAR Cancer 2025; 7:zcaf009. [PMID: 40115747 PMCID: PMC11923746 DOI: 10.1093/narcan/zcaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/25/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025] Open
Abstract
Oncogene activation in normal untransformed cells induces DNA replication stress and creates a dependency on DNA damage response (DDR) mechanisms for cell survival. Different oncogenic stimuli signal via distinct mechanisms in every cancer setting. The DDR is also pathologically reprogrammed and deployed in diverse ways in different cancers. Because mutant KRAS is the driver oncogene in 90% of pancreatic ductal adenocarcinomas (PDACs), here we have investigated DDR mechanisms by which KRAS-induced DNA replication stress is tolerated in normal human pancreatic epithelial cells [human pancreatic nestin-expressing (HPNE) cells]. Using a candidate screening approach, we identify TRIP13 as a KRASG12V-induced messenger RNA that is also expressed at high levels in PDAC relative to normal tissues. Using genetic and pharmacological tools, we show that TRIP13 is necessary to sustain ongoing DNA synthesis and viability specifically in KRASG12V-expressing cells. TRIP13 promotes survival of KRASG12V-expressing HPNE cells in a homologous recombination (HR)-dependent manner. KRASG12V-expressing HPNE cells lacking TRIP13 acquire hallmark HR deficiency phenotypes, including sensitivity to inhibitors of translesion synthesis and poly-ADP ribose polymerase. Established PDAC cell lines are also sensitized to intrinsic DNA damage and therapy-induced genotoxicity following TRIP13 depletion. Taken together, our results expose TRIP13 as an attractive new and therapeutically tractable vulnerability of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Jay R Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Gaith N Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Sayali Joseph
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Urvi Patel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jeffrey A Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Samuel C Wolff
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
3
|
Anand JR, Droby GN, Joseph S, Patel U, Zhang X, Klomp JA, Der CJ, Purvis JE, Wolff SC, Bowser J, Vaziri C. TRIP13 protects pancreatic cancer cells against intrinsic and therapy-induced DNA replication stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634889. [PMID: 39975297 PMCID: PMC11838190 DOI: 10.1101/2025.01.26.634889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Oncogene activation in normal untransformed cells induces DNA replication stress and creates a dependency on DNA Damage Response (DDR) mechanisms for cell survival. Different oncogenic stimuli signal via distinct mechanisms in every cancer setting. The DDR is also pathologically re-programmed and deployed in diverse ways in different cancers. Because mutant KRAS is the driver oncogene in 90% of Pancreatic Ductal Adenocarcinomas (PDAC), here we have investigated DDR mechanisms by which KRAS-induced DNA replication stress is tolerated in normal human pancreatic epithelial cells (HPNE). Using a candidate screening approach, we identify TRIP13 as a KRASG12V-induced mRNA that is also expressed at high levels in PDAC relative to normal tissues. Using genetic and pharmacological tools, we show that TRIP13 is necessary to sustain ongoing DNA synthesis and viability specifically in KRASG12V-expressing cells. TRIP13 promotes survival of KRASG12V-expressing HPNE cells in a Homologous Recombination (HR)-dependent manner. KRASG12V-expressing HPNE cells lacking TRIP13 acquire hallmark HR-deficiency (HRD) phenotypes including sensitivity to inhibitors of Trans-Lesion Synthesis (TLS) and Poly-ADP Ribose Polymerase (PARP). Established PDAC cell lines are also sensitized to intrinsic DNA damage and therapy-induced genotoxicity following TRIP13-depletion. Taken together our results expose TRIP13 as an attractive new and therapeutically-tractable vulnerability of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Jay R Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gaith N Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sayali Joseph
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Urvi Patel
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey A Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel C Wolff
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Taghizadeh B, Moradi R, Mirzavi F, Barati M, Soleimani A, Jaafari MR, Zarghami N. The protection role of human growth hormone on skin cells following ultraviolet B exposure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112961. [PMID: 38917719 DOI: 10.1016/j.jphotobiol.2024.112961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Ultraviolet-B (UVB) radiation is the leading environmental cause of skin damage and photoaging. The epidermis and dermis layers of the skin mainly absorb UVB. UVB stimulates apoptosis, cell cycle arrest, generation of reactive oxygen species, and degradation of collagen and elastin fibers. OBJECTIVE This study investigated the potential of human growth hormone (hGH) in protecting the skin fibroblasts and keratinocytes (HFFF-2 and HaCaT cell lines) from UVB-induced damage. METHODS The MTT assay was performed to evaluate UVB-induced mitochondrial damage via assessing the mitochondrial dehydrogenase activity, and flow cytometry was carried out to investigate the effects of UVB and hGH on the cell cycle and apoptosis of UVB-irradiated cells. In addition, the fold change mRNA expression levels of Type I collagen and elastin in HFFF-2 cells were evaluated using the qRT-PCR method following UVB exposure. RESULTS We observed that treatment of cells with hGH before UVB exposure inhibited UVB-induced loss of mitochondrial dehydrogenase activity, apoptosis, and sub-G1 population formation in both cell lines. We also found that hGH-treated HFFF-2 cells showed up-regulated mRNA expression of Type I collagen, elastin, and IGF-1 in response to UVB irradiation. CONCLUSION These findings suggest hGH as a potential anti-UVB compound that can protect skin cells from UVB-induced damage. Our findings merit further investigation and can be used to better understand the role of hGH in skin photoaging.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Barati
- Department of Pathophysiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Anvar Soleimani
- Department of Medical Microbiology, Cihan University - Sulaimaniya, Kurdistan Region, Iraq
| | - Mahmoud-Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
5
|
Ronsley R, Lazow M, Henry RK. Growth hormone after CNS tumor diagnosis: the fundamentals, fears, facts, and future directions. Pediatr Hematol Oncol 2023; 40:786-799. [PMID: 36939305 DOI: 10.1080/08880018.2023.2190765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
Growth hormone deficiency (GHD) may occur in pediatric patients with central nervous system (CNS) tumors at initial tumor presentation or later as treatment-related sequelae. While it is well recognized that growth hormone (GH) has beneficial effects on growth and endocrinopathies, there's often hesitancy by clinicians to initiate GH therapy for GHD after CNS tumor diagnosis due to the perceived increased risk of tumor recurrence. The available data is described here and based on this review, there is no evidence of increased risk of tumor recurrence or secondary malignancy in patients treated with GH after CNS tumor diagnosis. Further understanding of tumor biology and presence of downstream GH targets including insulin-like growth factor-1 (IGF-1) and insulin receptor activity is still needed.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Section of Hematology, Oncology & BMT, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Section of Hematology, Oncology & BMT, Department of Pediatrics, Seattle Children's Hospital, The University of Washington, Seattle, Washington, USA
| | - Margot Lazow
- Section of Hematology, Oncology & BMT, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Rohan K Henry
- Section of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|