1
|
Shang J, Song F, Zhang Z, Chen D, Yang S. Application of novel CRISPR tools in brain therapy. Life Sci 2024; 352:122855. [PMID: 38908787 DOI: 10.1016/j.lfs.2024.122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In recent years, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing toolkit has been widely used to modify the genome sequence of organisms. As the CRISPR toolbox continues to grow and new CRISPR-associated (Cas) proteins are discovered, its applications have expanded beyond conventional genome editing. This now encompass epigenetic editing, gene expression control, and various other functions. Notably, these advancements are finding practical application in the treatment of brain diseases. Furthermore, the amalgamation of CRISPR and Chimeric Antigen Receptor T-cell (CAR-T) technologies has emerged as a potential approach for disease treatment. With this in mind, this review commences by offering a comprehensive overview of recent advancements in CRISPR gene editing tools. This encompasses an exploration of various Cas proteins, gene expression control, epigenetic editing, base editing and primer editing. Additionally, we present an in-depth examination of the manifold applications of these innovative CRISPR tools in the realms of brain therapeutics, such as neurodegenerative diseases, neurological syndromes and genetic disorders, epileptic disorders, and brain tumors, also explore the pathogenesis of these diseases. This includes their utilization in modeling, gene screening, therapeutic gene editing, as well as their emerging synergy with CAR-T technology. Finally, we discuss the remaining technical challenges that need to be addressed for effective utilization of CRISPR tools in disease treatment.
Collapse
Affiliation(s)
- Jiawen Shang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Song R, Chen Z, Xiao H, Wang H. The CRISPR-Cas system in molecular diagnostics. Clin Chim Acta 2024; 561:119820. [PMID: 38901631 DOI: 10.1016/j.cca.2024.119820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Robust, sensitive, and rapid molecular detection tools are essential prerequisites for disease diagnosis and epidemiological control. However, the current mainstream tests necessitate expensive equipment and specialized operators, impeding the advancement of molecular diagnostics. The CRISPR-Cas system is an integral component of the bacterial adaptive immune system, wherein Cas proteins recognize PAM sequences by binding to CRISPR RNA, subsequently triggering DNA or RNA cleavage. The discovery of the CRISPR-Cas system has invigorated molecular diagnostics. With further in-depth research on this system, its application in molecular diagnosis is flourishing. In this review, we provide a comprehensive overview of recent research progress on the CRISPR-Cas system, specifically focusing on its application in molecular diagnosis.
Collapse
Affiliation(s)
- Rao Song
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhongyi Chen
- Department of Pathology, Suining Central Hospital, Suining 629000, China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Haojun Wang
- Department of Pathology, Suining Central Hospital, Suining 629000, China.
| |
Collapse
|
3
|
Chaves LCS, Orr-Burks N, Vanover D, Mosur VV, Hosking SR, Kumar E. K. P, Jeong H, Jung Y, Assumpção JAF, Peck HE, Nelson SL, Burke KN, Garrison MA, Arthur RA, Claussen H, Heaton NS, Lafontaine ER, Hogan RJ, Zurla C, Santangelo PJ. mRNA-encoded Cas13 treatment of Influenza via site-specific degradation of genomic RNA. PLoS Pathog 2024; 20:e1012345. [PMID: 38968329 PMCID: PMC11253931 DOI: 10.1371/journal.ppat.1012345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/17/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024] Open
Abstract
The CRISPR-Cas13 system has been proposed as an alternative treatment of viral infections. However, for this approach to be adopted as an antiviral, it must be optimized until levels of efficacy rival or exceed the performance of conventional approaches. To take steps toward this goal, we evaluated the influenza viral RNA degradation patterns resulting from the binding and enzymatic activity of mRNA-encoded LbuCas13a and two crRNAs from a prior study, targeting PB2 genomic and messenger RNA. We found that the genome targeting guide has the potential for significantly higher potency than originally detected, because degradation of the genomic RNA is not uniform across the PB2 segment, but it is augmented in proximity to the Cas13 binding site. The PB2 genome targeting guide exhibited high levels (>1 log) of RNA degradation when delivered 24 hours post-infection in vitro and maintained that level of degradation over time, with increasing multiplicity of infection (MOI), and across modern influenza H1N1 and H3N2 strains. Chemical modifications to guides with potent LbuCas13a function, resulted in nebulizer delivered efficacy (>1-2 log reduction in viral titer) in a hamster model of influenza (Influenza A/H1N1/California/04/09) infection given prophylactically or as a treatment (post-infection). Maximum efficacy was achieved with two doses, when administered both pre- and post-infection. This work provides evidence that mRNA-encoded Cas13a can effectively mitigate Influenza A infections opening the door to the development of a programmable approach to treating multiple respiratory infections.
Collapse
Affiliation(s)
- Lorena C. S. Chaves
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, Georgia, United States of America
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Varun V. Mosur
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Sarah R. Hosking
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, Georgia, United States of America
| | - Pramod Kumar E. K.
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hyeyoon Jeong
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Younghun Jung
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - José A. F. Assumpção
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hannah E. Peck
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Sarah L. Nelson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kaitlyn N. Burke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - McKinzie A. Garrison
- Emory Integrated Computational Core, Emory University, Atlanta, Georgia, United States of America
| | - Robert A. Arthur
- Emory Integrated Computational Core, Emory University, Atlanta, Georgia, United States of America
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University, Atlanta, Georgia, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Eric R. Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Hogan
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, Georgia, United States of America
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
4
|
Zhang F, Ignatova VV, Ming GL, Song H. Advances in brain epitranscriptomics research and translational opportunities. Mol Psychiatry 2024; 29:449-463. [PMID: 38123727 PMCID: PMC11116067 DOI: 10.1038/s41380-023-02339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Various chemical modifications of all RNA transcripts, or epitranscriptomics, have emerged as crucial regulators of RNA metabolism, attracting significant interest from both basic and clinical researchers due to their diverse functions in biological processes and immense clinical potential as highlighted by the recent profound success of RNA modifications in improving COVID-19 mRNA vaccines. Rapid accumulation of evidence underscores the critical involvement of various RNA modifications in governing normal neural development and brain functions as well as pathogenesis of brain disorders. Here we provide an overview of RNA modifications and recent advancements in epitranscriptomic studies utilizing animal models to elucidate important roles of RNA modifications in regulating mammalian neurogenesis, gliogenesis, synaptic formation, and brain function. Moreover, we emphasize the pivotal involvement of RNA modifications and their regulators in the pathogenesis of various human brain disorders, encompassing neurodevelopmental disorders, brain tumors, psychiatric and neurodegenerative disorders. Furthermore, we discuss potential translational opportunities afforded by RNA modifications in combatting brain disorders, including their use as biomarkers, in the development of drugs or gene therapies targeting epitranscriptomic pathways, and in applications for mRNA-based vaccines and therapies. We also address current limitations and challenges hindering the widespread clinical application of epitranscriptomic research, along with the improvements necessary for future progress.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valentina V Ignatova
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Shi P, Wu X. Programmable RNA targeting with CRISPR-Cas13. RNA Biol 2024; 21:1-9. [PMID: 38764173 PMCID: PMC11110701 DOI: 10.1080/15476286.2024.2351657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
The RNA-targeting CRISPR-Cas13 system has enabled precise engineering of endogenous RNAs, significantly advancing our understanding of RNA regulation and the development of RNA-based diagnostic and therapeutic applications. This review aims to provide a summary of Cas13-based RNA targeting tools and applications, discuss limitations and challenges of existing tools and suggest potential directions for further development of the RNA targeting system.
Collapse
Affiliation(s)
- Peiguo Shi
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xuebing Wu
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Bigini F, Lee SH, Sun YJ, Sun Y, Mahajan VB. Unleashing the potential of CRISPR multiplexing: Harnessing Cas12 and Cas13 for precise gene modulation in eye diseases. Vision Res 2023; 213:108317. [PMID: 37722240 PMCID: PMC10685911 DOI: 10.1016/j.visres.2023.108317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
Gene therapy is a flourishing field with the potential to revolutionize the treatment of genetic diseases. The emergence of CRISPR-Cas9 has significantly advanced targeted and efficient genome editing. Although CRISPR-Cas9 has demonstrated promising potential applications in various genetic disorders, it faces limitations in simultaneously targeting multiple genes. Novel CRISPR systems, such as Cas12 and Cas13, have been developed to overcome these challenges, enabling multiplexing and providing unique advantages. Cas13, in particular, targets mRNA instead of genomic DNA, permitting precise gene expression control and mitigating off-target effects. This review investigates the potential of Cas12 and Cas13 in ocular gene therapy applications, such as suppression of inflammation and cell death. In addition, the capabilities of Cas12 and Cas13 are explored in addressing potential targets related with disease mechanisms such as aberrant isoforms, mitochondrial genes, cis-regulatory sequences, modifier genes, and long non-coding RNAs. Anatomical accessibility and relative immune privilege of the eye provide an ideal organ system for evaluating these novel techniques' efficacy and safety. By targeting multiple genes concurrently, CRISPR-Cas12 and Cas13 systems hold promise for treating a range of ocular disorders, including glaucoma, retinal dystrophies, and age-related macular degeneration. Nonetheless, additional refinement is required to ascertain the safety and efficacy of these approaches in ocular disease treatments. Thus, the development of Cas12 and Cas13 systems marks a significant advancement in gene therapy, offering the potential to devise effective treatments for ocular disorders.
Collapse
Affiliation(s)
- Fabio Bigini
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA; Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Soo Hyeon Lee
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Young Joo Sun
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Yang Sun
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; Stanford Maternal & Child Health Research Institute, Palo Alto, CA 94304, USA
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
7
|
Aquino-Jarquin G. Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems. Drug Discov Today 2023; 28:103793. [PMID: 37797813 DOI: 10.1016/j.drudis.2023.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Comparative genomics has enabled the discovery of tiny clustered regularly interspaced short palindromic repeat (CRISPR) bacterial immune system effectors with enormous potential for manipulating eukaryotic genomes. Recently, smaller Cas proteins, including miniature Cas9, Cas12, and Cas13 proteins, have been identified and validated as efficient genome editing and base editing tools in human cells. The compact size of these novel CRISPR effectors is highly desirable for generating CRISPR-based therapeutic approaches, mainly to overcome in vivo delivery constraints, providing a promising opportunity for editing pathogenic mutations of clinical relevance and knocking down RNAs in human cells without inducing chromosomal insertions or genome alterations. Thus, these tiny CRISPR-Cas systems represent new and highly programmable, specific, and efficient platforms, which expand the CRISPR toolkit for potential therapeutic opportunities.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section. Research on Genomics, Genetics, and Bioinformatics Laboratory. Hemato-Oncology Building, 4th Floor, Section 2. Children's Hospital of Mexico, Federico Gómez, Mexico City, Mexico.
| |
Collapse
|
8
|
Wang SE, Jiang YH. Novel epigenetic molecular therapies for imprinting disorders. Mol Psychiatry 2023; 28:3182-3193. [PMID: 37626134 PMCID: PMC10618104 DOI: 10.1038/s41380-023-02208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Genomic imprinting disorders are caused by the disruption of genomic imprinting processes leading to a deficit or increase of an active allele. Their unique molecular mechanisms underlying imprinted genes offer an opportunity to investigate epigenetic-based therapy for reactivation of an inactive allele or reduction of an active allele. Current treatments are based on managing symptoms, not targeting the molecular mechanisms underlying imprinting disorders. Here, we highlight molecular approaches of therapeutic candidates in preclinical and clinical studies for individual imprinting disorders. These include the significant progress of discovery and testing of small molecules, antisense oligonucleotides, and CRISPR mediated genome editing approaches as new therapeutic strategies. We discuss the significant challenges of translating these promising therapies from the preclinical stage to the clinic, especially for genome editing based approaches.
Collapse
Affiliation(s)
- Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
| |
Collapse
|
9
|
Chen SJ, Rai CI, Wang SC, Chen YC. Point-of-Care Testing for Infectious Diseases Based on Class 2 CRISPR/Cas Technology. Diagnostics (Basel) 2023; 13:2255. [PMID: 37443646 PMCID: PMC10340307 DOI: 10.3390/diagnostics13132255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The early detection of infectious diseases and microorganisms is critical for effective disease treatment, control, and prevention. Currently, nucleic acid testing and antigen-antibody serum reaction are the two methods most commonly used for the detection of infectious diseases. The former is highly accurate, specific, and sensitive, but it is time-consuming, expensive, and has special technician and instrument requirements. The latter is rapid and economical, but it may not be accurate and sensitive enough. Therefore, it is necessary to develop a quick and on-site diagnostic test for point-of-care testing (POCT) to enable the clinical detection of infectious diseases that is accurate, sensitive, convenient, cheap, and portable. Here, CRISPR/Cas-based detection methods are detailed and discussed in depth. The powerful capacity of these methods will facilitate the development of diagnostic tools for POCT, though they still have some limitations. This review explores and highlights POCT based on the class 2 CRISPR/Cas assay, such as Cas12 and Cas13 proteins, for the detection of infectious diseases. We also provide an outlook on perspectives, multi-application scenarios, clinical applications, and limitations for POCT based on class 2 CRISPR/Cas technology.
Collapse
Affiliation(s)
- Shiu-Jau Chen
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Chung-I Rai
- Health Care Business Group, Foxconn Technology Co., Ltd., New Taipei City 23680, Taiwan;
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Shao-Cheng Wang
- Department of Psychiatric, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
- Department of Nurse-Midwifery and Women Health, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
| | - Yuan-Chuan Chen
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 35664, Taiwan
- Department of Medical Technology, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 35664, Taiwan
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Abstract
Cardiovascular disease still remains the leading cause of morbidity and mortality worldwide. Current pharmacological or interventional treatments help to tackle symptoms and even reduce mortality, but cardiovascular disease cases continue to rise. The emergence of novel therapeutic strategies that precisely and efficiently combat cardiovascular disease is therefore deemed more essential than ever. RNA editing, the cell-intrinsic deamination of adenosine or cytidine RNA residues, changes the molecular identity of edited nucleotides, severely altering the fate of RNA molecules involved in key biological processes. The most common type of RNA editing is the deamination of adenosine residue to inosine (A-to-I), which is catalysed by adenosine deaminases acting on RNA (ADARs). Recent efforts have convincingly liaised RNA editing-based mechanisms to the pathophysiology of the cardiovascular system. In this review, we will briefly introduce the basic concepts of the RNA editing field of research. We will particularly focus our discussion on the therapeutic exploitation of RNA editing as a novel therapeutic tool as well as the future perspectives for its use in cardiovascular disease treatment.
Collapse
|
11
|
Deng K, Liu Z, Li X, Zhang Z, Fan Y, Huang Q, Zhang Y, Wang F. Targeted Demethylation of the TGFβ1 mRNA Promotes Myoblast Proliferation via Activating the SMAD2 Signaling Pathway. Cells 2023; 12:cells12071005. [PMID: 37048078 PMCID: PMC10093215 DOI: 10.3390/cells12071005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Recent evidence suggested that N6-methyladenosine (m6A) methylation can determine m6A-modified mRNA fate and play an important role in skeletal muscle development. It was well known that transforming growth factor beta 1 (TGFβ1) is involved in a variety of cellular processes, such as proliferation, differentiation, and apoptosis. However, little is known about the m6A-mediated TGFβ1 regulation in myogenesis. Here, we observed an increase in endogenous TGFβ1 expression and activity during myotube differentiation. However, the knockdown of TGFβ1 inhibits the proliferation and induces cell apoptosis of myoblast. Moreover, we found that m6A in 5′-untranslated regions (5′UTR) of TGFβ1 promote its decay and inhibit its expression, leading to the blockage of the TGFβ1/SMAD2 signaling pathway. Furthermore, the targeted specific demethylation of TGFβ1 m6A using dCas13b-FTO significantly increased the TGFβ1-mediated activity of the SMAD2 signaling pathway, promoting myoblast proliferation. These findings suggest that TGFβ1 is an essential regulator of myoblast growth that is negatively regulated by m6A. Overall, these results highlight the critical role of m6A-mediated post-transcriptional regulation in myogenesis.
Collapse
|
12
|
Quansah E, Chen Y, Yang S, Wang J, Sun D, Zhao Y, Chen M, Yu L, Zhang C. CRISPR-Cas13 in malaria parasite: Diagnosis and prospective gene function identification. Front Microbiol 2023; 14:1076947. [PMID: 36760507 PMCID: PMC9905151 DOI: 10.3389/fmicb.2023.1076947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Malaria caused by Plasmodium is still a serious public health problem. Genomic editing is essential to understand parasite biology, elucidate mechanical pathways, uncover gene functions, identify novel therapeutic targets, and develop clinical diagnostic tools. Recent advances have seen the development of genomic diagnostic technologies and the emergence of genetic manipulation toolbox comprising a host of several systems for editing the genome of Plasmodium at the DNA, RNA, and protein level. Genomic manipulation at the RNA level is critical as it allows for the functional characterization of several transcripts. Of notice, some developed artificial RNA genome editing tools hinge on the endogenous RNA interference system of Plasmodium. However, Plasmodium lacks a robust RNAi machinery, hampering the progress of these editing tools. CRISPR-Cas13, which belongs to the VI type of the CRISPR system, can specifically bind and cut RNA under the guidance of crRNA, with no or minimal permanent genetic scar on genes. This review summarizes CRISPR-Cas13 system from its discovery, classification, principle of action, and diagnostic platforms. Further, it discusses the application prospects of Cas13-based systems in Plasmodium and highlights its advantages and drawbacks.
Collapse
Affiliation(s)
- Elvis Quansah
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yihuan Chen
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Shijie Yang
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Junyan Wang
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Danhong Sun
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yangxi Zhao
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Ming Chen
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Li Yu
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China,*Correspondence: Li Yu, ✉
| | - Chao Zhang
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China,Chao Zhang, ✉
| |
Collapse
|
13
|
RNA-targeting strategies as a platform for ocular gene therapy. Prog Retin Eye Res 2023; 92:101110. [PMID: 35840489 DOI: 10.1016/j.preteyeres.2022.101110] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Genetic medicine is offering hope as new therapies are emerging for many previously untreatable diseases. The eye is at the forefront of these advances, as exemplified by the approval of Luxturna® by the United States Food and Drug Administration (US FDA) in 2017 for the treatment of one form of Leber Congenital Amaurosis (LCA), an inherited blindness. Luxturna® was also the first in vivo human gene therapy to gain US FDA approval. Numerous gene therapy clinical trials are ongoing for other eye diseases, and novel delivery systems, discovery of new drug targets and emerging technologies are currently driving the field forward. Targeting RNA, in particular, is an attractive therapeutic strategy for genetic disease that may have safety advantages over alternative approaches by avoiding permanent changes in the genome. In this regard, antisense oligonucleotides (ASO) and RNA interference (RNAi) are the currently popular strategies for developing RNA-targeted therapeutics. Enthusiasm has been further fuelled by the emergence of clustered regularly interspersed short palindromic repeats (CRISPR)-CRISPR associated (Cas) systems that allow targeted manipulation of nucleic acids. RNA-targeting CRISPR-Cas systems now provide a novel way to develop RNA-targeted therapeutics and may provide superior efficiency and specificity to existing technologies. In addition, RNA base editing technologies using CRISPR-Cas and other modalities also enable precise alteration of single nucleotides. In this review, we showcase advances made by RNA-targeting systems for ocular disease, discuss applications of ASO and RNAi technologies, highlight emerging CRISPR-Cas systems and consider the implications of RNA-targeting therapeutics in the development of future drugs to treat eye disease.
Collapse
|
14
|
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) renaissance was catalysed by the discovery that RNA-guided prokaryotic CRISPR-associated (Cas) proteins can create targeted double-strand breaks in mammalian genomes. This finding led to the development of CRISPR systems that harness natural DNA repair mechanisms to repair deficient genes more easily and precisely than ever before. CRISPR has been used to knock out harmful mutant genes and to fix errors in coding sequences to rescue disease phenotypes in preclinical studies and in several clinical trials. However, most genetic disorders result from combinations of mutations, deletions and duplications in the coding and non-coding regions of the genome and therefore require sophisticated genome engineering strategies beyond simple gene knockout. To overcome this limitation, the toolbox of natural and engineered CRISPR-Cas systems has been dramatically expanded to include diverse tools that function in human cells for precise genome editing and epigenome engineering. The application of CRISPR technology to edit the non-coding genome, modulate gene regulation, make precise genetic changes and target infectious diseases has the potential to lead to curative therapies for many previously untreatable diseases.
Collapse
Affiliation(s)
- Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Paul B Finn
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
15
|
In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes (Basel) 2022; 13:genes13122222. [PMID: 36553489 PMCID: PMC9778055 DOI: 10.3390/genes13122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.
Collapse
|
16
|
CRISPR-Based Tools for Fighting Rare Diseases. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121968. [PMID: 36556333 PMCID: PMC9787644 DOI: 10.3390/life12121968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
Rare diseases affect the life of a tremendous number of people globally. The CRISPR-Cas system emerged as a powerful genome engineering tool and has facilitated the comprehension of the mechanism and development of therapies for rare diseases. This review focuses on current efforts to develop the CRISPR-based toolbox for various rare disease therapy applications and compares the pros and cons of different tools and delivery methods. We further discuss the therapeutic applications of CRISPR-based tools for fighting different rare diseases.
Collapse
|
17
|
Kumar D, Yadav A, Ahmad R, Dwivedi UN, Yadav K. CRISPR-Based Genome Editing for Nutrient Enrichment in Crops: A Promising Approach Toward Global Food Security. Front Genet 2022; 13:932859. [PMID: 35910203 PMCID: PMC9329789 DOI: 10.3389/fgene.2022.932859] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022] Open
Abstract
The global malnutrition burden imparts long-term developmental, economic, social, and medical consequences to individuals, communities, and countries. The current developments in biotechnology have infused biofortification in several food crops to fight malnutrition. However, these methods are not sustainable and suffer from several limitations, which are being solved by the CRISPR-Cas-based system of genome editing. The pin-pointed approach of CRISPR-based genome editing has made it a top-notch method due to targeted gene editing, thus making it free from ethical issues faced by transgenic crops. The CRISPR-Cas genome-editing tool has been extensively used in crop improvement programs due to its more straightforward design, low methodology cost, high efficiency, good reproducibility, and quick cycle. The system is now being utilized in the biofortification of cereal crops such as rice, wheat, barley, and maize, including vegetable crops such as potato and tomato. The CRISPR-Cas-based crop genome editing has been utilized in imparting/producing qualitative enhancement in aroma, shelf life, sweetness, and quantitative improvement in starch, protein, gamma-aminobutyric acid (GABA), oleic acid, anthocyanin, phytic acid, gluten, and steroidal glycoalkaloid contents. Some varieties have even been modified to become disease and stress-resistant. Thus, the present review critically discusses CRISPR-Cas genome editing-based biofortification of crops for imparting nutraceutical properties.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agriculture University, Banaskantha, India
| | - Rumana Ahmad
- Department of Biochemistry, Era Medical University and Hospital, Lucknow, India
| | | | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
18
|
Xue Y, Chen Z, Zhang W, Zhang J. Engineering CRISPR/Cas13 System against RNA Viruses: From Diagnostics to Therapeutics. Bioengineering (Basel) 2022; 9:bioengineering9070291. [PMID: 35877342 PMCID: PMC9312194 DOI: 10.3390/bioengineering9070291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022] Open
Abstract
Over the past decades, RNA viruses have been threatened people’s health and led to global health emergencies. Significant progress has been made in diagnostic methods and antiviral therapeutics for combating RNA viruses. ELISA and RT-qPCR are reliable methods to detect RNA viruses, but they suffer from time-consuming procedures and limited sensitivities. Vaccines are effective to prevent virus infection and drugs are useful for antiviral treatment, while both need a relatively long research and development cycle. In recent years, CRISPR-based gene editing and modifying tools have been expanded rapidly. In particular, the CRISPR-Cas13 system stands out from the CRISPR-Cas family due to its accurate RNA-targeting ability, which makes it a promising tool for RNA virus diagnosis and therapy. Here, we review the current applications of the CRISPR-Cas13 system against RNA viruses, from diagnostics to therapeutics, and use some medically important RNA viruses such as SARS-CoV-2, dengue virus, and HIV-1 as examples to demonstrate the great potential of the CRISPR-Cas13 system.
Collapse
|
19
|
Jamehdor S, Pajouhanfar S, Saba S, Uzan G, Teimoori A, Naserian S. Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells 2022; 11:999. [PMID: 35326449 PMCID: PMC8946942 DOI: 10.3390/cells11060999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Viruses are one of the most important concerns for human health, and overcoming viral infections is a worldwide challenge. However, researchers have been trying to manipulate viral genomes to overcome various disorders, including cancer, for vaccine development purposes. CRISPR (clustered regularly interspaced short palindromic repeats) is becoming one of the most functional and widely used tools for RNA and DNA manipulation in multiple organisms. This approach has provided an unprecedented opportunity for creating simple, inexpensive, specific, targeted, accurate, and practical manipulations of viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus-1 (HIV-1), and vaccinia virus. Furthermore, this method can be used to make an effective and precise diagnosis of viral infections. Nevertheless, a valid and scientifically designed CRISPR system is critical to make more effective and accurate changes in viruses. In this review, we have focused on the best and the most effective ways to design sgRNA, gene knock-in(s), and gene knock-out(s) for virus-targeted manipulation. Furthermore, we have emphasized the application of CRISPR technology in virus diagnosis and in finding significant genes involved in virus-host interactions.
Collapse
Affiliation(s)
- Saleh Jamehdor
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 989155432609, Iran;
| | - Sara Pajouhanfar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sadaf Saba
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838738, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
20
|
Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L, Du J, Du Y. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Front Cell Dev Biol 2022; 10:866820. [PMID: 35356276 PMCID: PMC8959342 DOI: 10.3389/fcell.2022.866820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Ribonucleic acid (RNA) and proteins play critical roles in gene expression and regulation. The relevant study increases the understanding of various life processes and contributes to the diagnosis and treatment of different diseases. RNA imaging and mapping RNA-protein interactions expand the understanding of RNA biology. However, the existing methods have some limitations. Recently, precise RNA targeting of CRISPR-Cas13 in cells has been reported, which is considered a new promising platform for RNA imaging in living cells and recognition of RNA-protein interactions. In this review, we first described the current findings on Cas13. Furthermore, we introduced current tools of RNA real-time imaging and mapping RNA-protein interactions and highlighted the latest advances in Cas13-mediated tools. Finally, we discussed the advantages and disadvantages of Cas13-based methods, providing a set of new ideas for the optimization of Cas13-mediated methods.
Collapse
Affiliation(s)
- Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Pengfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
- *Correspondence: Yinan Du, ; Juan Du,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Juan Du,
| |
Collapse
|