1
|
Zhang R, Wang L, Li Y, Liu Y, Dong K, Pei Y, Zhao J, Liu G, Li J, Zhang X, Cui T, Gao Y, Wang W, Wang Y, Gui C, Zhou G. CYTOR-NFAT1 feedback loop regulates epithelial-mesenchymal transition of retinal pigment epithelial cells. Hum Cell 2024; 37:1056-1069. [PMID: 38744794 DOI: 10.1007/s13577-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Epithelial mesenchymal transition (EMT) occurring in retinal pigment epithelial cells (RPE) is a crucial mechanism that contributes to the development of age-related macular degeneration (AMD), a pivotal factor leading to permanent vision impairment. Long non-coding RNAs (lncRNAs) have emerged as critical regulators orchestrating EMT in RPE cells. In this study, we explored the function of the lncRNA CYTOR (cytoskeleton regulator RNA) in EMT of RPE cells and its underlying mechanisms. Through weighted correlation network analysis, we identified CYTOR as an EMT-related lncRNA associated with AMD. Experimental validation revealed that CYTOR orchestrates TGF-β1-induced EMT, as well as proliferation and migration of ARPE-19 cells. Further investigation demonstrated the involvement of CYTOR in regulating the WNT5A/NFAT1 pathway and NFAT1 intranuclear translocation in the ARPE-19 cell EMT model. Mechanistically, CHIP, EMSA and dual luciferase reporter assays confirmed NFAT1's direct binding to CYTOR's promoter, promoting transcription. Reciprocally, CYTOR overexpression promoted NFAT1 expression, while NFAT1 overexpression increased CYTOR transcription. These findings highlight a mutual promotion between CYTOR and NFAT1, forming a positive feedback loop that triggers the EMT phenotype in ARPE-19 cells. These discoveries provide valuable insights into the molecular mechanisms of EMT and its association with AMD, offering potential avenues for targeted therapies in EMT-related conditions, including AMD.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Lin Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Yang Li
- Department of Ophthalmology, Yuncheng Central Hospital, Yuncheng, 044000, Shanxi, China
| | - Yan Liu
- Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Kui Dong
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Yajing Pei
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Junmei Zhao
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Gang Liu
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Jing Li
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Xiaodan Zhang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Tong Cui
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Yan Gao
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Wenjuan Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Yongrui Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Chenwei Gui
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Guohong Zhou
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China.
| |
Collapse
|
2
|
Wu Y, Yin S, Li C, Zhao L, Song M, Yu Y, Tang L, Yang Y. A signature of seven hypoxia-related lncRNAs is a potential biomarker for predicting the prognosis of melanoma. Am J Cancer Res 2024; 14:1712-1729. [PMID: 38726277 PMCID: PMC11076246 DOI: 10.62347/lhkw3124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Melanoma is the most aggressive type of skin cancer and has a high mortality rate once metastasis occurs. Hypoxia is a universal characteristic of the microenvironment of cancer and a driver of melanoma progression. In recent years, long noncoding RNAs (lncRNAs) have attracted widespread attention in oncology research. In this study, screening was performed and revealed seven hypoxia-related lncRNAs AC008687.3, AC009495.1, AC245128.3, AL512363.1, LINC00518, LINC02416 and MCCC1-AS1 as predictive biomarkers. A predictive risk model was constructed via univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Patients were grouped according to the model risk score, and Kaplan-Meier analysis was performed to compare survival between groups. Functional and pathway enrichment analyses were performed to compare gene set enrichment between groups. Moreover, a nomogram was constructed with the risk score as a variable. In both the training and validation sets, patients in the low-risk group had better overall survival than did those in the high-risk group (P<0.001). The 3-, 5- and 10-year area under the curve (AUC) values for the nomogram model were 0.821, 0.795 and 0.820, respectively. Analyses of immune checkpoints, immunotherapy response, drug sensitivity, and mutation landscape were also performed. The results suggested that the low-risk group had a better response to immunotherapeutic. In addition, the nomogram can effectively predict the prognosis and immunotherapy response of melanoma patients. The signature of seven hypoxia-related lncRNAs showed great potential value as an immunotherapy response biomarker, and these lncRNAs might be treatment targets for melanoma patients.
Collapse
Affiliation(s)
- Yunyang Wu
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| | - Shenhui Yin
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Chunzhen Li
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Liyuan Zhao
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Mengqi Song
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Ling Tang
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| | - Yanlong Yang
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| |
Collapse
|
3
|
Beatriz Cristina Biz T, Carolina de Sousa CS, Frank John S, Miriam Galvonas J. LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies. RNA Biol 2024; 21:81-93. [PMID: 39498940 PMCID: PMC11540095 DOI: 10.1080/15476286.2024.2421672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.
Collapse
Affiliation(s)
- Tonin Beatriz Cristina Biz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Slack Frank John
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jasiulionis Miriam Galvonas
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Hong A, Cao M, Li D, Wang Y, Zhang G, Fang F, Zhao L, Wang Q, Lin T, Wang Y. Lnc-PKNOX1-1 inhibits tumor progression in cutaneous malignant melanoma by regulating NF-κB/IL-8 axis. Carcinogenesis 2023; 44:871-883. [PMID: 37843471 PMCID: PMC10818096 DOI: 10.1093/carcin/bgad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cutaneous malignant melanoma is one of the most lethal cutaneous malignancies. Accumulating evidence has demonstrated the potential influence of long non-coding RNAs (lncRNAs) in biological behaviors of melanoma. Herein, we reported a novel lncRNA, lnc-PKNOX1-1 and systematically studied its functions and possible molecular mechanisms in melanoma. Reverse transcription-quantitative PCR assay showed that lnc-PKNOX1-1 was significantly decreased in melanoma cells and tissues. Low lnc-PKNOX1-1 expression was significantly correlated with invasive pathological type and Breslow thickness of melanoma. In vitro and in vivo experiments showed lnc-PKNOX1-1 dramatically inhibited melanoma cell proliferation, migration and invasion. Mechanically, protein microarray analysis suggested that interleukin-8 (IL-8) was negatively regulated by lnc-PKNOX1-1 in melanoma, which was confirmed by western blot and ELISA. Western blot analysis also showed that lnc-PKNOX1-1 could promote p65 phosphorylation at Ser536 in melanoma. Subsequent rescue assays proved IL-8 overexpression could partly reverse the tumor-suppressing function of lnc-PKNOX1-1 overexpression in melanoma cells, indicating that lnc-PKNOX1-1 suppressed the development of melanoma by regulating IL-8. Taken together, our study demonstrated the tumor-suppressing ability of lnc-PKNOX1-1 in melanoma, suggesting its potential as a novel diagnostic biomarker and therapeutic target for melanoma.
Collapse
Affiliation(s)
- Anlan Hong
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Meng Cao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Dongqing Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yixin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guoqiang Zhang
- Department of Dermatology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Fang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liang Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qiang Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Tong Lin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yan Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
5
|
Jacksi M, Schad E, Buday L, Tantos A. Absence of Scaffold Protein Tks4 Disrupts Several Signaling Pathways in Colon Cancer Cells. Int J Mol Sci 2023; 24:ijms24021310. [PMID: 36674824 PMCID: PMC9861885 DOI: 10.3390/ijms24021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Tks4 is a large scaffold protein in the EGFR signal transduction pathway that is involved in several cellular processes, such as cellular motility, reactive oxygen species-dependent processes, and embryonic development. It is also implicated in a rare developmental disorder, Frank-ter Haar syndrome. Loss of Tks4 resulted in the induction of an EMT-like process, with increased motility and overexpression of EMT markers in colorectal carcinoma cells. In this work, we explored the broader effects of deletion of Tks4 on the gene expression pattern of HCT116 colorectal carcinoma cells by transcriptome sequencing of wild-type and Tks4 knockout (KO) cells. We identified several protein coding genes with altered mRNA levels in the Tks4 KO cell line, as well as a set of long non-coding RNAs, and confirmed these changes with quantitative PCR on a selected set of genes. Our results show a significant perturbation of gene expression upon the deletion of Tks4, suggesting the involvement of different signal transduction pathways over the well-known EGFR signaling.
Collapse
Affiliation(s)
- Mevan Jacksi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
6
|
Zhang Q, Wu X, Sun Y, Yang L, Wang Z, Yang Y, Zhao X, Zhang X. Epithelial-mesenchymal transition-related lncRNAs associated with prognosis and immune cell infiltration in lung adenocarcinoma. Am J Transl Res 2022; 14:7308-7323. [PMID: 36398231 PMCID: PMC9641461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) remains the most common type of lung cancer and is associated with distant metastasis and poor prognosis. Epithelial-mesenchymal transition (EMT) plays crucial roles in carcinogenesis, embryogenesis, and wound healing. EMT-related molecules may be adopted for early diagnosis and prognosis of cancer and targeting them may constitute an attractive strategy for treatment. This study aims to identify the EMT-related long non-coding RNAs (lncRNAs) and develop a risk signature to accurately predict the prognosis of LUAD patients. METHODS The RNA-seq data and corresponding clinical profiles were obtained from LUAD cohort of The Cancer Genome Atlas (TCGA) database. EMT-related lncRNAs significantly associated with prognosis were identified by Pearson correlation analysis and univariate regression analysis. Subsequently, an EMT-related prognostic risk signature was developed through LASSO and multivariate regression analyses. Kaplan Meier and receiver operating characteristic curve analysis were implemented to assess the predictive performance of the signature. The nomogram was constructed to predict the 1-year, 3-year, and 5-year overall survival of LUAD patients. Additionally, enrichment analyses were carried out to identify probable biologic processes and cellular pathways involved in the signature. The correlation of immune cell infiltration and risk score was also evaluated by CIBERSORT algorithm. Finally, we constructed a ceRNA network to further study possible downstream targets and molecular mechanisms of EMT-related lncRNAs in LUAD. RESULTS Eight EMT-related lncRNAs were identified to develop a prognostic risk signature in LUAD. Patients with high-risk scores had worse survival outcomes than those with low-risk scores. The signature showed robust predictive potential, and was verified to be an independent prognostic factor. Moreover, the risk score based on the signature was significantly correlated with immune cell infiltration in LUAD. CONCLUSIONS We established and validated a prognostic signature that reflects the tumor microenvironment characteristics and predicts the outcomes for LUAD.
Collapse
Affiliation(s)
- Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s HospitalChina
- Henan Provincial People’s HospitalZhengzhou, China
| | - Xuan Wu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s HospitalChina
- Henan Provincial People’s HospitalZhengzhou, China
- Academy of Medical Science, Zhengzhou UniversityZhengzhou, China
| | - Ya Sun
- Xinxiang Medical UniversityXinxiang, China
| | - Li Yang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s HospitalChina
- Henan Provincial People’s HospitalZhengzhou, China
- Academy of Medical Science, Zhengzhou UniversityZhengzhou, China
| | - Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s HospitalChina
- Henan Provincial People’s HospitalZhengzhou, China
- Academy of Medical Science, Zhengzhou UniversityZhengzhou, China
| | - Yuanjian Yang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s HospitalChina
- Henan Provincial People’s HospitalZhengzhou, China
| | - Xingru Zhao
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s HospitalChina
- Henan Provincial People’s HospitalZhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s HospitalChina
- Henan Provincial People’s HospitalZhengzhou, China
| |
Collapse
|
7
|
Xu Y, Chen Y, Niu Z, Yang Z, Xing J, Yin X, Guo L, Zhang Q, Yang Y, Han Y. Ferroptosis-related lncRNA signature predicts prognosis and immunotherapy efficacy in cutaneous melanoma. Front Surg 2022; 9:860806. [PMID: 35937602 PMCID: PMC9354448 DOI: 10.3389/fsurg.2022.860806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Ferroptosis-related lncRNAs are promising biomarkers for predicting the prognosis of many cancers. However, a ferroptosis-related signature to predict the prognosis of cutaneous melanoma (CM) has not been identified. The purpose of this study was to construct a ferroptosis-related lncRNA signature to predict prognosis and immunotherapy efficacy in CM. Methods Ferroptosis-related differentially expressed genes (FDEGs) and lncRNAs (FDELs) were identified using TCGA, GTEx, and FerrDb datasets. We performed Cox and LASSO regressions to identify key FDELs, and constructed a risk score to stratify patients into high- and low-risk groups. The lncRNA signature was evaluated using the areas under the receiver operating characteristic curves (AUCs) and Kaplan-Meier analyses in the training, testing, and entire cohorts. Multivariate Cox regression analyses including the lncRNA signature and common clinicopathological characteristics were performed to identify independent predictors of overall survival (OS). A nomogram was developed for clinical use. We performed gene set enrichment analyses (GSEA) to identify significantly enriched pathways. Differences in the tumor microenvironment (TME) between the 2 groups were assessed using 7 algorithms. To predict the efficacy of immune checkpoint inhibitors (ICI), we analyzed the association between PD1 and CTLA4 expression and the risk score. Finally, differences in Tumor Mutational Burden (TMB) and molecular drugs Sensitivity between the 2 groups were performed. Results We identified 5 lncRNAs (AATBC, AC145423.2, LINC01871, AC125807.2, and AC245041.1) to construct the risk score. The AUC of the lncRNA signature was 0.743 in the training cohort and was validated in the testing and entire cohorts. Kaplan-Meier analyses revealed that the high-risk group had poorer prognosis. Multivariate Cox regression showed that the lncRNA signature was an independent predictor of OS with higher accuracy than traditional clinicopathological features. The 1-, 3-, and 5-year survival probabilities for CM patients were 92.7%, 57.2%, and 40.2% with an AUC of 0.804, indicating a good accuracy and reliability of the nomogram. GSEA showed that the high-risk group had lower ferroptosis and immune response. TME analyses confirmed that the high-risk group had lower immune cell infiltration (e.g., CD8+ T cells, CD4+ memory-activated T cells, and M1 macrophages) and lower immune functions (e.g., immune checkpoint activation). Low-risk patients whose disease expressed PD1 or CTLA4 were likely to respond better to ICIs. The analysis demonstrated that the TMB had significantly difference between low- and high- risk groups. Chemotherapy drugs, such as sorafenib, Imatinib, ABT.888 (Veliparib), Docetaxel, and Paclitaxel showed Significant differences in the estimated IC50 between the two risk groups. Conclusion Our novel ferroptosis-related lncRNA signature was able to accurately predict the prognosis and ICI outcomes of CM patients. These ferroptosis-related lncRNAs might be potential biomarkers and therapeutic targets for CM.
Collapse
Affiliation(s)
- Yujian Xu
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, China
| | - Zehao Niu
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, China
| | - Zheng Yang
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, China
| | - Jiahua Xing
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xiangye Yin
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, China
| | - Lingli Guo
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, China
| | - Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yi Yang
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
- Correspondence: Yan Han Yi Yang
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, China
- Correspondence: Yan Han Yi Yang
| |
Collapse
|
8
|
Zhang Y, He R, Lei X, Mao L, Yin Z, Zhong X, Cao W, Zheng Q, Li D. Comprehensive Analysis of a Ferroptosis-Related lncRNA Signature for Predicting Prognosis and Immune Landscape in Osteosarcoma. Front Oncol 2022; 12:880459. [PMID: 35837104 PMCID: PMC9273977 DOI: 10.3389/fonc.2022.880459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Research on the implications of ferroptosis in tumors has increased rapidly in the last decades. There are evidences that ferroptosis is involved in several aspects of cancer biology, including tumor progression, metastasis, immunomodulation, and therapeutic response. Nonetheless, the interaction between ferroptosis-related lncRNAs (FRLs) and the osteosarcoma immune microenvironment is poorly understood. In this study, a risk model composed of FRLs was developed using univariate and LASSO Cox regression analyses. On the basis of this model, FRL scores were calculated to systematically explore the role of the model in predicting the prognosis and immune characteristics of osteosarcoma patients. Survival analysis showed that osteosarcoma samples with lower FRL-score had better overall survival. After predicting the abundance of immune cells in osteosarcoma microenvironment by single-sample gene-set enrichment analysis (ssGSEA) and ESTIMATE analysis, we found that the FRL-score could distinguish immune function, immune score, stromal score, tumor purity, and tumor infiltration of immune cells in different osteosarcoma patients. In addition, FRL-score was also associated with immune checkpoint gene expression and half-maximal inhibitory concentration of chemotherapeutic agents. Finally, we confirmed that knockdown of RPARP-AS1 suppressed the malignant activity of osteosarcoma cells in vitro experiments. In general, the FRL-based prognostic signature could promote our understanding of the immune microenvironment characteristics of osteosarcoma and guide more effective treatment regimens.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rong He
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xuan Lei
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lianghao Mao
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyu Yin
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyu Zhong
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenbing Cao
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-Pharm Co., Ltd., Shenzhen, China
- *Correspondence: Dapeng Li, ; Qiping Zheng,
| | - Dapeng Li
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Dapeng Li, ; Qiping Zheng,
| |
Collapse
|
9
|
Huang S, Li D, Zhuang L, Zhang J, Wu J. Identification of an Epithelial-Mesenchymal Transition-Related Long Non-coding RNA Prognostic Signature to Determine the Prognosis and Drug Treatment of Hepatocellular Carcinoma Patients. Front Med (Lausanne) 2022; 9:850343. [PMID: 35685422 PMCID: PMC9170944 DOI: 10.3389/fmed.2022.850343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with poor prognosis. Epithelial–mesenchymal transition (EMT) is crucial for cancer progression and metastasis. Thus, we aimed to construct an EMT-related lncRNA signature for predicting the prognosis of HCC patients. Methods Cox regression analysis and LASSO regression method were used to build an EMT-related lncRNAs risk signature based on TCGA database. Kaplan-Meier survival analysis was conducted to compare the overall survival (OS) in different risk groups. ROC curves and Cox proportional-hazards analysis were performed to evaluate the performance of the risk signature. RT-qPCR was conducted in HCC cell lines and tissue samples to detect the expression of some lncRNAs in this risk model. Furthermore, a nomogram involving the risk score and clinicopathological features was built and validated with calibration curves and ROC curves. In addition, we explored the association between risk signature and tumor immunity, somatic mutations status, and drugs sensitivity. Results Twelve EMT-related lncRNAs were obtained to construct the prognostic risk signature for patients with HCC. The Kaplan-Meier curve analysis revealed that patients in the high-risk group had worse overall survival (OS) than those in low-risk group. ROC curves and Cox regression analysis suggested the risk signature could predict HCC survival exactly and independently. The prognostic value of the risk model was confirmed in the testing and entire groups. We also found AC099850.3 and AC092171.2 were highly expressed in HCC cells and HCC tissues. The nomogram could accurately predict survival probability of HCC patients. Gene set enrichment analysis (GSEA) and gene ontology (GO) analysis showed that cancer-related pathways and cell division activity were enriched in high-risk group. The SNPs showed that the prevalence of TP53 mutations was significantly different between high- and low-risk groups; the TP53 mutations and the high TMB were both associated with a worse prognosis in patients with HCC. We also observed widely associations between risk signature and drugs sensitivity in HCC. Conclusion A novel EMT-related lncRNAs risk signature, including 12 lncRNAs, was established and identified in patients with HCC, which can accurately predict the prognosis of HCC patients and may be used to guide individualized treatment in the clinical practice.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Dan Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Lingling Zhuang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
- Department of Gynaecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
- *Correspondence: Jianbing Wu,
| |
Collapse
|
10
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Yang X, Niu S, Liu J, Fang J, Wu Z, Ling S, Di G, Jiang X. Identification of an epithelial-mesenchymal transition-related lncRNA prognostic signature for patients with glioblastoma. Sci Rep 2021; 11:23694. [PMID: 34880375 PMCID: PMC8654911 DOI: 10.1038/s41598-021-03213-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is a strikingly heterogeneous and lethal brain tumor with very poor prognosis. LncRNAs play critical roles in the tumorigenesis of GBM through regulation of various cancer-related genes and signaling pathways. Here, we focused on the essential role of EMT and identified 78 upregulated EMT-related genes in GBM through differential expression analysis and Gene set enrichment analysis (GSEA). A total of 301 EMT-related lncRNAs were confirmed in GBM through Spearman correlation analysis and a prognostic signature consisting of seven EMT-related lncRNAs (AC012615.1, H19, LINC00609, LINC00634, POM121L9P, SNHG11, and USP32P3) was established by univariate and multivariate Cox regression analyses. Significantly, Kaplan-Meier analysis and receiver-operating-characteristic (ROC) curve validated the accuracy and efficiency of the signature to be satisfactory. Quantitative real-time (qRT)-PCR assay demonstrated the expression alterations of the seven lncRNAs between normal glial and glioma cell lines. Functional enrichment analysis revealed multiple EMT and metastasis-related pathways were associated with the EMT-related lncRNA prognostic signature. In addition, we observed the degree of immune cell infiltration and immune responses were significantly increased in high-risk subgroup compared with low-risk subgroup. In conclusion, we established an effective and robust EMT-related lncRNA signature which was expected to predict the prognosis and immunotherapy response for GBM patients.
Collapse
Affiliation(s)
- XinJie Yang
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China.,Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China
| | - Sha Niu
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China.,Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China
| | - JiaQiang Liu
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China.,Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China
| | - Jincheng Fang
- Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China
| | - ZeYu Wu
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China.,Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China
| | - Shizhang Ling
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China.,Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China
| | - GuangFu Di
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China. .,Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China.
| | - XiaoChun Jiang
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China. .,Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
12
|
Zhou C, Zhang H, Lu L. Identification and Validation of Hypoxia-Related lncRNA Signature as a Prognostic Model for Hepatocellular Carcinoma. Front Genet 2021; 12:744113. [PMID: 34650600 PMCID: PMC8505699 DOI: 10.3389/fgene.2021.744113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most general malignant tumors. Hypoxia is a critical clinical characteristic and acts as a significant part in the development and cancers’ prognosis. The prognostic value and biological functions of hypoxia-related lncRNAs in hepatocellular carcinoma is little known. Thus, we aim to establish a hypoxia-related lncRNA signature to predict the HCC patients’ survival. First, we extracted the hypoxia-related genes and expression of lncRNAs from the MSigDB and TCGA database, respectively. The co-expression analysis among hypoxia-related mRNAs and lncRNAs was employed to identify hypoxia-related lncRNAs. Then, comprehensive analyses of lncRNAs expression level and survival data were applied to establish the signature. We built a prognostic signature on the foundation of the three differently expressed hypoxia-related lncRNAs. Kaplan-Meier curves indicated the low-risk group is associated with better survival. The 1−, 3−, and 5 years AUC values of the signature were 0.805, 0.672 and 0.63 respectively. The test set performed consistent outcomes. A nomogram was built grounded on the risk score and clinicopathological features. GSEA showed the immune-related pathways in high-risk group, while metabolism-related pathways in low-risk group. Besides, we found this model was correlated with the clinical features, tumor immune cell infiltration, immune checkpoints, and m6A-related genes. Finally, a novel signature based on hypoxia-related lncRNAs was established and validated for predicting HCC patients’ survival and may offer some useful information for immunotherapies.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Cologne, Germany
| | - Huajun Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|