1
|
Wang Y, Liu W, Zhao X, Li Y, Song C, Huo B, Song Y, Tan B. LINC02679 regulates TRIML2 to promote gastric cancer proliferation and invasion via targeting miR-5004-3p. Noncoding RNA Res 2025; 13:1-14. [PMID: 40276014 PMCID: PMC12017915 DOI: 10.1016/j.ncrna.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
As a key protein, Tripartite motif family-like 2 (TRIML2) is crucial to the p53-mediated apoptosis and is correlated with tumorigenesis. Emerging evidence showed that long non-coding RNAs (lncRNAs) play roles in the malignant progression of gastric cancer (GC). However, the function and underlying mechanism of LINC02679 in GC are still unclear. In this study, we detected the differentially expressed lncRNA, LINC02679, which was associated with the progression of GC. Herein, we showed that LINC02679 was overexpressed in GC tissues and correlated with poor prognosis, which aggravated GC proliferation, migration, and invasion. Mechanistically, LINC02679 sponged miR-5004-3p to promote the expression of TRIML2, regulating GC tumorigenesis and progression. Moreover, TRIML2 affected the proliferation, migration, and invasion of GC cells through TGF-β1/Smads signaling pathway. Overall, our findings proved a new mechanism and provided a promising strategy for precise therapy of GC by targeting LINC02679.
Collapse
Affiliation(s)
- Yingying Wang
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
| | - Wenbo Liu
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
| | - Xiaohan Zhao
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
| | - Yong Li
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
| | - Chao Song
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
| | - Bingjie Huo
- Oncology Department of Integrated Chinese and Western Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
- Key Laboratory for TCM Diagnosis and Treatment of Digestive Tract Tumors in Hebei Province, Shijiazhuang, 050011, PR China
| | - Yanru Song
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
| | - Bibo Tan
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
| |
Collapse
|
2
|
Xu J, Wang Y, Li X, Zheng M, Li Y, Zhang W. Clinical value assessment for serum hsa_tsr013526 in the diagnosis of gastric carcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:2753-2767. [PMID: 38251933 DOI: 10.1002/tox.24146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
Gastric carcinoma (GC) is a malignant tumor that is detrimental to human health. Transfer RNA-derived small RNAs are a newly identified class of noncoding small RNAs with specific biological functions that are aberrantly expressed in cancer. The aim of this study was to investigate the potential of hsa_tsr013526 as a biomarker for GC. Quantitative real-time fluorescence polymerase chain reaction was used to detect the expression level of hsa_tsr013526. The molecular characteristics of hsa_tsr013526 were verified by agarose gel electrophoresis, Sanger sequencing, and separation of nuclear and cytoplasmic RNA fractions. By testing the receiver operating characteristic (ROC) curves, the diagnostic efficiency of GC using hsa_tsr013526 was determined. Finally, we predicted the downstream of hsa_tsr013526 using functional assays and bioinformatics analysis. Serum expression of hsa_tsr013526 was higher in GC patients than in healthy donors. Serum expression showed differential changes in GC patients, gastritis patients, and healthy donors. Chi-squared tests showed that high expression of hsa_tsr013526 was significantly correlated with T stage, lymphatic metastasis, and tumor node metastasis stage. ROC curve analysis indicated that GC patients could be discriminated from healthy donors or gastritis patients based on their serum levels of hsa_tsr013526. Furthermore, hsa_tsr013526 expression was significantly reduced in postoperative GC patients (p = .0016). High expression of hsa_tsr013526 promotes gastric cancer cell proliferation, invasion, and migration. Serum hsa_tsr013526 was stable and specific, and could be used for dynamic monitoring of GC patients. Therefore, hsa_tsr013526 may be a new biomarker for the diagnosis and postoperative monitoring of GC patients.
Collapse
Affiliation(s)
- Jing Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School, Nantong University, Nantong, China
| | - Yue Wang
- Basic Medicine School, Xuzhou Medical University, Xuzhou, China
| | - Xian Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ming Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School, Nantong University, Nantong, China
| | - Weiwei Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Kang K, Li X, Peng Y, Zhou Y. Comprehensive Analysis of Disulfidptosis-Related LncRNAs in Molecular Classification, Immune Microenvironment Characterization and Prognosis of Gastric Cancer. Biomedicines 2023; 11:3165. [PMID: 38137387 PMCID: PMC10741100 DOI: 10.3390/biomedicines11123165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Disulfidptosis is a novel form of programmed cell death that unveils promising avenues for the exploration of tumor treatment modalities. Gastric cancer (GC) is a malignant tumor characterized by high incidence and mortality rate. However, there has been no systematic study of disulfidptosis-related long noncoding RNAs (DRLs) signature in GC patients. METHODS The lncRNA expression profiles containing 412 GC samples were acquired from the Cancer Genome Atlas (TCGA) database. Differential expression analysis was performed alongside Pearson correlation analysis to identify DRLs. Prognostically significant DRLs were further screened using univariate COX regression analysis. Subsequently, LASSO regression and multifactorial COX regression analyses were employed to establish a risk signature composed of DRLs that exhibit independent prognostic significance. The predictive value of this risk signature was further validated in a test cohort. The ESTIMATE, CIBERSORT and ssGSEA methodologies were utilized to investigate the tumor immune microenvironment of GC populations with different DRLs profiles. Finally, the correlation between DRLs and various GC drug responses was explored. RESULTS We established a prognostic signature comprising 12 disulfidptosis-related lncRNAs (AC110491.1, AL355574.1, RHPN1-AS1, AOAH-IT1, AP001065.3, MEF2C-AS1, AC016394.2, LINC00705, LINC01952, PART1, TNFRSF10A-AS1, LINC01537). The Kaplan-Meier survival analysis revealed that patients in the high-risk group exhibited a poor prognosis. Both univariate and multivariate COX regression models demonstrated that the DRLs signature was an independent prognostic indicator in GC patients. Furthermore, the signature exhibited accurate predictions of survival at 1-, 3- and 5- years with the area under the curve (AUC) values of 0.708, 0.689 and 0.854, respectively. In addition, we also observed significant associations between the DRLs signature and various clinical variables, distinct immune landscape and drug sensitivity profiles in GC patients. The low-risk group patients may be more likely to benefit from immunotherapy and chemotherapy. CONCLUSIONS Our study investigated the role and potential clinical implications of DRLs in GC. The risk model constructed by DRLs demonstrated high accuracy in predicting the survival outcomes of GC and improving the treatment efficacy for GC patients.
Collapse
Affiliation(s)
- Kuo Kang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuanxuan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanhao Peng
- National Health Council Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha 410078, China;
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Liu Q, Huang J, Yan W, Liu Z, Liu S, Fang W. FGFR families: biological functions and therapeutic interventions in tumors. MedComm (Beijing) 2023; 4:e367. [PMID: 37750089 PMCID: PMC10518040 DOI: 10.1002/mco2.367] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
There are five fibroblast growth factor receptors (FGFRs), namely, FGFR1-FGFR5. When FGFR binds to its ligand, namely, fibroblast growth factor (FGF), it dimerizes and autophosphorylates, thereby activating several key downstream pathways that play an important role in normal physiology, such as the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K)/AKT, phospholipase C gamma/diacylglycerol/protein kinase c, and signal transducer and activator of transcription pathways. Furthermore, as an oncogene, FGFR genetic alterations were found in 7.1% of tumors, and these alterations include gene amplification, gene mutations, gene fusions or rearrangements. Therefore, FGFR amplification, mutations, rearrangements, or fusions are considered as potential biomarkers of FGFR therapeutic response for tyrosine kinase inhibitors (TKIs). However, it is worth noting that with increased use, resistance to TKIs inevitably develops, such as the well-known gatekeeper mutations. Thus, overcoming the development of drug resistance becomes a serious problem. This review mainly outlines the FGFR family functions, related pathways, and therapeutic agents in tumors with the aim of obtaining better outcomes for cancer patients with FGFR changes. The information provided in this review may provide additional therapeutic ideas for tumor patients with FGFR abnormalities.
Collapse
Affiliation(s)
- Qing Liu
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiyu Huang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Weiwei Yan
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhen Liu
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
- Key Laboratory of Protein Modification and DegradationBasic School of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Shu Liu
- Department of Breast SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Weiyi Fang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
5
|
Feng YN, Li BY, Wang K, Li XX, Zhang L, Dong XZ. Epithelial-mesenchymal transition-related long noncoding RNAs in gastric carcinoma. Front Mol Biosci 2022; 9:977280. [PMCID: PMC9605205 DOI: 10.3389/fmolb.2022.977280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily phenotypic conversion program, the epithelial-mesenchymal transition (EMT) has been implicated in tumour deterioration and has facilitated the metastatic ability of cancer cells via enhancing migration and invasion. Gastric cancer (GC) remains a frequently diagnosed non-skin malignancy globally. Most GC-associated mortality can be attributed to metastasis. Recent studies have shown that EMT-related long non-coding RNAs (lncRNAs) play a critical role in GC progression and GC cell motility. In addition, lncRNAs are associated with EMT-related transcription factors and signalling pathways. In the present review, we comprehensively described the EMT-inducing lncRNA molecular mechanisms and functional perspectives of EMT-inducing lncRNAs in GC progression. Taken together, the statements of this review provided a clinical implementation in identifying lncRNAs as potential therapeutic targets for advanced GC.
Collapse
|
6
|
Hu Y, Luo M. NORAD-sponged miR-378c alleviates malignant behaviors of stomach adenocarcinoma via targeting NRP1. Cancer Cell Int 2022; 22:79. [PMID: 35164743 PMCID: PMC8842946 DOI: 10.1186/s12935-022-02474-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 01/25/2023] Open
Abstract
Background Stomach adenocarcinoma (STAD) is the most common type of gastric cancer (GC), with a high recurrence rate and poor prognosis, but the potential indicators for STAD are insufficient. Methods Herein, we found that MicroRNA-378c (miR-378c) was lowly expressed in STAD, and the low expression of miR-378c was highly correlated with poor overall survival (OS), T stage, Reflux history, DSS events and PFI events of STAD patients. Results In addition, univariate analysis displayed that miR-378c was significantly associated with OS (Hazard ratio 0.735; 95% CI, 0.542–0.995; P = 0.046). Furthermore, it was validated that miR-378c inhibition accelerated STAD cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), while they were suppressed by miR-378c overexpression. Mechanistically, Neuropilin 1 (NRP1) was confirmed as the target of miR-378c, and Lnc-NORAD was identified as its sponger. More importantly, NORAD-mediated miR-378c inhibited malignant behaviors of STAD both in vitro and in vivo. Conclusions Collectively, these results suggest miR-378c as a promising indicator for the treatment of STAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02474-5.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ming Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
Valacchi G, Pambianchi E, Coco S, Pulliero A, Izzotti A. MicroRNA Alterations Induced in Human Skin by Diesel Fumes, Ozone, and UV Radiation. J Pers Med 2022; 12:176. [PMID: 35207665 PMCID: PMC8880698 DOI: 10.3390/jpm12020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations are a driving force of the carcinogenesis process. MicroRNAs play a role in silencing mutated oncogenes, thus defending the cell against the adverse consequences of genotoxic damages induced by environmental pollutants. These processes have been well investigated in lungs; however, although skin is directly exposed to a great variety of environmental pollutants, more research is needed to better understand the effect on cutaneous tissue. Therefore, we investigated microRNA alteration in human skin biopsies exposed to diesel fumes, ozone, and UV light for over 24 h of exposure. UV and ozone-induced microRNA alteration right after exposure, while the peak of their deregulations induced by diesel fumes was reached only at the end of the 24 h. Diesel fumes mainly altered microRNAs involved in the carcinogenesis process, ozone in apoptosis, and UV in DNA repair. Accordingly, each tested pollutant induced a specific pattern of microRNA alteration in skin related to the intrinsic mechanisms activated by the specific pollutant. These alterations, over a short time basis, reflect adaptive events aimed at defending the tissue against damages. Conversely, whenever environmental exposure lasts for a long time, the irreversible alteration of the microRNA machinery results in epigenetic damage contributing to the pathogenesis of inflammation, dysplasia, and cancer induced by environmental pollutants.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Erika Pambianchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | | | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
- UOC Mutagenesis and Cancer Prevention, IRCCS San Martino Hospital, 16132 Genova, Italy
| |
Collapse
|