1
|
Fonseca-Souza G, Alves-Souza L, de Menezes-Oliveira MAH, Daratsianos N, Beisel-Memmert S, Kirschneck C, Scariot R, Feltrin-Souza J, Küchler EC. Polymorphisms and dental age in non-syndromic cleft lip and palate: a cross-sectional study. BMC Pediatr 2025; 25:80. [PMID: 39885448 PMCID: PMC11783813 DOI: 10.1186/s12887-025-05444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Children with non-syndromic cleft lip with or without palate (CL ± P) may present alterations in dental development. The purpose of this cross-sectional study was to compare the dental age (DA) between children with and without CL ± P, and whether single nucleotide polymorphisms (SNPs) in genes encoding growth factors are associated with DA variations. METHODS Children aged between 5 and 14 years with and without CL ± P were recruited to participate in this study. DA was evaluated by calibrated examiners (kappa > 0.80) using the method proposed by Demirjian et al. (1973). Genomic DNA was extracted from buccal cells, and SNPs in Epidermal Growth Factor (EGF) - rs4444903 and rs2237051, Epidermal Growth Factor Receptor (EGFR) - rs2227983 -, Transforming Growth Factor Beta 1 (TGFB1) - rs1800470 and rs4803455 -, and Transforming Growth Factor Beta Receptor 2 (TGFBR2) - rs3087465 - were genotyped by real-time polymerase chain reactions using the TaqMan assay. The Student T-test was used to compare the variations in DA between the phenotypes "with CL ± P" and "without CL ± P", and the ANOVA two-way test was performed to compare the variations in DA among the genotypes (α = 0.05). A post-hoc analysis was performed using Bonferroni correction. RESULTS Two hundred and nine (n = 209) children (100 with CL ± P and 109 without CL ± P) with a mean chronological age of 8.66 years - standard deviation (SD) = 1.92 - were included. The group with CL ± P demonstrated a significantly delayed DA (mean=-0.23; SD = 0.71) compared to the group without CL ± P (mean=-0.01; SD = 0.88) (p = 0.049). Genotype distributions were in Hardy-Weinberg equilibrium. The SNP rs4803455 in TGFB1 was significantly associated with DA variations in children without CL ± P (p < 0.01). In the group with CL ± P, no significant differences in DA were observed among the genotypes. CONCLUSION Children with CL ± P presented delayed DA compared with children without CL ± P. The SNP rs4803455 in TGFB1 is associated with variations in DA in children without CL ± P.
Collapse
Affiliation(s)
- Gabriela Fonseca-Souza
- Department of Stomatology, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, Jardim Botânico, Curitiba, 80210-170, Paraná, Brazil
| | - Lhorrany Alves-Souza
- Department of Biomaterials, University of Uberaba, Av. Nenê Sabino 1801, Bairro Universitário, Uberaba, 38055-500, Minas Gerais, Brazil
| | | | - Nikolaos Daratsianos
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Svenja Beisel-Memmert
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Rafaela Scariot
- Department of Stomatology, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, Jardim Botânico, Curitiba, 80210-170, Paraná, Brazil
| | - Juliana Feltrin-Souza
- Department of Stomatology, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, Jardim Botânico, Curitiba, 80210-170, Paraná, Brazil
| | - Erika Calvano Küchler
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Welschnonnenstr. 17, 53111, Bonn, Germany.
| |
Collapse
|
2
|
Xu C, Xie X, Wu Y, Wang J, Feng JQ. Bone or Tooth dentin: The TGF-β signaling is the key. Int J Biol Sci 2024; 20:3557-3569. [PMID: 38993575 PMCID: PMC11234226 DOI: 10.7150/ijbs.97206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/15/2024] [Indexed: 07/13/2024] Open
Abstract
To investigate the cell linkage between tooth dentin and bones, we studied TGF-β roles during postnatal dentin development using TGF-β receptor 2 (Tgfβr2) cKO models and cell lineage tracing approaches. Micro-CT showed that the early Tgfβr2 cKO exhibit short roots and thin root dentin (n = 4; p<0.01), a switch from multilayer pre-odontoblasts/odontoblasts to a single-layer of bone-like cells with a significant loss of ~85% of dentinal tubules (n = 4; p<0.01), and a matrix shift from dentin to bone. Mechanistic studies revealed a statistically significant decrease in odontogenic markers, and a sharp increase in bone markers. The late Tgfβr2 cKO teeth displayed losses of odontoblast polarity, a significant reduction in crown dentin volume, and the onset of massive bone-like structures in the crown pulp with high expression levels of bone markers and low levels of dentin markers. We thus concluded that bones and tooth dentin are in the same evolutionary linkage in which TGF-β signaling defines the odontogenic fate of dental mesenchymal cells and odontoblasts. This finding also raises the possibility of switching the pulp odontogenic to the osteogenic feature of pulp cells via a local manipulation of gene programs in future treatment of tooth fractures.
Collapse
Affiliation(s)
- Chunmei Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Jian Q Feng
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
3
|
Shamszadeh S, Shirvani A, Asgary S. The Role of Growth Factor Delivery Systems on Cellular Activities of Dental Stem Cells: A Systematic Review (Part II). Curr Stem Cell Res Ther 2024; 19:587-610. [PMID: 35692144 DOI: 10.2174/1574888x17666220609093939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The current systematic review aims to provide the available ex vivo evidence evaluating the biological interactions of dental stem cells (DSCs) and growth factor delivery systems. METHODS Following the Preferred Reporting Items for a Systematic Reviews and Meta-Analyses (PRISMA) guidelines, systematic search was conducted in the electronic databases (PubMed/Medline, Scopus, Web of Science, and Google Scholar) up to January 2022. Studies evaluating the biological interactions of DSCs and growth factor delivery systems were included. The outcome measures were cell cytocompatibility, mineralization, and differentiation. RESULTS Sixteen studies were selected for the qualitative synthesis. The following growth factor delivery systems exhibit adequate cytocompatibility, enhanced mineralization, and osteo/odontoblast differentiation potential of DSCs: 1) Fibroblast growth factor (FGF-2)-loaded-microsphere and silk fibroin, 2) Bone morphogenic protein-2 (BMP-2)-loaded-microsphere and mesoporous calcium silicate scaffold, 3) Transforming growth factor Beta 1 (TGF-ß1)-loaded-microsphere, glass ionomer cement (GIC), Bio-GIC and liposome, 4) TGF-ß1-loaded-nanoparticles/scaffold, 5) Vascular endothelial growth factor (VEGF)-loaded-fiber and hydrogel, 6) TGF-ß1/VEGF-loaded-nanocrystalline calcium sulfate/hydroxyapatite/calcium sulfate, 7) Epidermal growth factor-loaded- nanosphere, 8) Stem cell factor/DSCs-loaded-hydrogel and Silk fibroin, 9) VEGF/BMP-2/DSCs-loaded-Three-dimensional matrix, 10) VEGF/DSCs-loaded-microsphere/hydrogel, and 11) BMP-2/DSCs and VEGF/DSCs-loaded-Collagen matrices. The included delivery systems showed viability, except for Bio-GIC on day 3. The choice of specific growth factors and delivery systems (i.e., BMP-2-loaded-microsphere and VEGF-loaded-hydrogel) resulted in a greater gene expression. CONCLUSIONS This study, with low-level evidence obtained from ex vivo studies, suggests that growth factor delivery systems induce cell proliferation, mineralization, and differentiation toward a therapeutic potential in regenerative endodontics.
Collapse
Affiliation(s)
- Sayna Shamszadeh
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Shirvani
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Asgary
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Pan H, Yang Y, Xu H, Jin A, Huang X, Gao X, Sun S, Liu Y, Liu J, Lu T, Wang X, Zhu Y, Jiang L. The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes. Front Cell Dev Biol 2023; 11:1174579. [PMID: 37818127 PMCID: PMC10561098 DOI: 10.3389/fcell.2023.1174579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.
Collapse
Affiliation(s)
- Houwen Pan
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
5
|
Zhou T, Chen G, Xu Y, Zhang S, Tang H, Qiu T, Guo W. CDC42-mediated Wnt signaling facilitates odontogenic differentiation of DPCs during tooth root elongation. Stem Cell Res Ther 2023; 14:255. [PMID: 37726858 PMCID: PMC10510226 DOI: 10.1186/s13287-023-03486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND CDC42 is a member of Rho GTPase family, acting as a molecular switch to regulate cytoskeleton organization and junction maturation of epithelium in organ development. Tooth root pattern is a highly complicated and dynamic process that dependens on interaction of epithelium and mesenchyme. However, there is a lack of understanding of the role of CDC42 during tooth root elongation. METHODS The dynamic expression of CDC42 was traced during tooth development through immunofluorescence staining. Then we constructed a model of lentivirus or inhibitor mediated Cdc42 knockdown in Herwig's epithelial root sheath (HERS) cells and dental papilla cells (DPCs), respectively. Long-term influence of CDC42 abnormality was assessed via renal capsule transplantation and in situ injection of alveolar socket. RESULTS CDC42 displayed a dynamic spatiotemporal pattern, with abundant expression in HERS cells and apical DPCs in developing root. Lentivirus-mediated Cdc42 knockdown in HERS cells didn't disrupt cell junctions as well as epithelium-mesenchyme transition. However, inhibition of CDC42 in DPCs undermined cell proliferation, migration and odontogenic differentiation. Wnt/β-catenin signaling as the downstream target of CDC42 modulated DPCs' odontogenic differentiation. The transplantation and in situ injection experiments verified that loss of CDC42 impeded root extension via inhibiting the proliferation and differentiation of DPCs. CONCLUSIONS We innovatively revealed that CDC42 was responsible for guiding root elongation in a mesenchyme-specific manner. Furthermore, CDC42-mediated canonical Wnt signaling regulated odontogenic differentiation of DPCs during root formation.
Collapse
Affiliation(s)
- Tao Zhou
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuchan Xu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuning Zhang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huilin Tang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Qiu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Song YM, Na KH, Lee HJ, Park JB. The Effects of Transforming Growth Factor- β1 on the Differentiation of Cell Organoids Composed of Gingiva-Derived Stem Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9818299. [PMID: 35872843 PMCID: PMC9303143 DOI: 10.1155/2022/9818299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
This study was aimed at evaluating the effects of transforming growth factor-β on the differentiation and mRNA expression of organoids made out of human mesenchymal stem cells. Cell organoids composed of gingiva-derived stem cells were cultured in the presence of transforming growth factor-β1 at concentrations ranging from 0, 1, 10, to 20 ng/ml. Evaluations of the cell morphology of the organoids were performed on days 7, 9, 11, and 14. Quantitative cellular viability was completed on day 14. Alkaline phosphatase activity assays were performed to evaluate the differentiation of stem cells on day 14. Real-time polymerase chain reactions were used to determine the expression levels of TGF-β1, RUNX2, OCN, SOX9, and COL1A1 mRNA on day 14. The stem cells produced well-formed organoids on day 7, and the addition of transforming growth factor-β1 did not result in relevant changes in their shape. The organoids grew in size and became more intact with longer incubation times. On day 14, the diameters were 222.2 ± 9.6, 186.1 ± 4.8, 197.2 ± 9.6, and 211.1 ± 19.2 m for transforming growth factor-β1 at final concentrations of 0, 1, 10, and 20 ng/ml, respectively. Quantitative cell viability results from day 14 exhibited no significant difference between the groups (P > 0.05). There was significantly higher alkaline phosphatase activity with the addition of transforming growth factor-β1 with the highest value for the 1 ng/ml group (P < 0.05). Real-time polymerase chain reaction results demonstrated that the mRNA expression levels of RUNX2, OCN, and SOX were higher in 1 ng/ml but did not reach statistical significance. Treatment with 1 ng/ml of transforming growth factor-β1 significantly increased COL1A1 mRNA expression at day 14. The application of transforming growth factor-β1 increased differentiation, which was confirmed by alkaline phosphatase activity and mRNA expression while maintaining cell viability.
Collapse
Affiliation(s)
- Young-Min Song
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kyung-Hwan Na
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
8
|
Duncan HF, Kobayashi Y, Yamauchi Y, Quispe-Salcedo A, Chao Feng Z, Huang J, Partridge NC, Nakatani T, D’Armiento J, Shimizu E. The Critical Role of MMP13 in Regulating Tooth Development and Reactionary Dentinogenesis Repair Through the Wnt Signaling Pathway. Front Cell Dev Biol 2022; 10:883266. [PMID: 35531096 PMCID: PMC9068941 DOI: 10.3389/fcell.2022.883266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Matrix-metalloproteinase-13 (MMP13) is important for bone formation and remodeling; however, its role in tooth development remains unknown. To investigate this, MMP13-knockout (Mmp13−/−) mice were used to analyze phenotypic changes in the dentin–pulp complex, mineralization-associated marker-expression, and mechanistic interactions. Immunohistochemistry demonstrated high MMP13-expression in pulp-tissue, ameloblasts, odontoblasts, and dentin in developing WT-molars, which reduced in adults, with human-DPC cultures demonstrating a >2000-fold increase in Mmp13-expression during mineralization. Morphologically, Mmp13−/− molars displayed critical alterations in the dentin-phenotype, affecting dentin-tubule regularity, the odontoblast-palisade and predentin-definition with significantly reduced dentin volume (∼30% incisor; 13% molar), and enamel and dentin mineral-density. Reactionary-tertiary-dentin in response to injury was reduced at Mmp13−/− molar cusp-tips but with significantly more dystrophic pulpal mineralization in MMP13-null samples. Odontoblast differentiation-markers, nestin and DSP, reduced in expression after MMP13-loss in vivo, with reduced calcium deposition in MMP13-null DPC cultures. RNA-sequencing analysis of WT and Mmp13−/− pulp highlighted 5,020 transcripts to have significantly >2.0-fold change, with pathway-analysis indicating downregulation of the Wnt-signaling pathway, supported by reduced in vivo expression of the Wnt-responsive gene Axin2. Mmp13 interaction with Axin2 could be partly responsible for the loss of odontoblastic activity and alteration to the tooth phenotype and volume which is evident in this study. Overall, our novel findings indicate MMP13 as critical for tooth development and mineralization processes, highlighting mechanistic interaction with the Wnt-signaling pathway.
Collapse
Affiliation(s)
- Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Henry F. Duncan, ; Emi Shimizu,
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Yukako Yamauchi
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | | | - Zhi Chao Feng
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Jia Huang
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Nicola C. Partridge
- Department of Molecular Pathobiology, New York University Dentistry, New York, NY, United States
| | - Teruyo Nakatani
- Department of Molecular Pathobiology, New York University Dentistry, New York, NY, United States
| | - Jeanine D’Armiento
- Department of Physiology and Cellular Biophysics, Columbia University Medical Centre, New York, NY, United States
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
- *Correspondence: Henry F. Duncan, ; Emi Shimizu,
| |
Collapse
|
9
|
Wang E, Guo Y, Gao S, Zhou Y, Liu B, Dissanayaka WL, Zheng Y, Zhou Q, Zhai J, Gao Z, Zhang B, Liu R, Zhang K. Long Non-Coding RNAs MALAT1 and NEAT1 in Non-syndromic Orofacial Clefts. Oral Dis 2022; 29:1668-1679. [PMID: 35255186 DOI: 10.1111/odi.14177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) are thought to play important roles in non-syndromic orofacial clefts (NSOFC). Clinical diagnosis was categorized as either non-syndromic cleft lip with or without cleft palate (NSCL/P), or non-syndromic cleft palate-only (NSCPO). Tissues excised from the trimmed wound edge were reserved as experimental samples; adjacent normal control was used as a positive control, and tissue from healthy individuals was used as a blank control. Target lncRNAs in the collected tissues were identified using microarrays and quantitative reverse transcription PCR (RT-qPCR). Immunohistochemical (IHC) staining and RT-qPCR were used to verify the target mRNAs. Pathway, gene ontology (GO) enrichment, and TargetScan predictions were employed to construct competing endogenous RNA networks (ceRNA networks) and explore their potential functions. RNA-Seq revealed 24 upregulated and 43 downregulated lncRNAs; MALAT1 and NEAT1 were screened and validated using RT-qPCR. Common NSOFC risk factors were positively correlated with MALAT1 and NEAT1 expression. Bioinformatics predicted four ceRNA networks; GO enrichment focused on their potential functions. RT-qPCR and IHC data were consistent with respect to expression levels of proteins and the mRNAs that encode them. As MALAT1 and NEAT1 are associated with the severity of NSOFC, they represent potential therapeutic targets and prognostic biomarkers.
Collapse
Affiliation(s)
- Errui Wang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Yumeng Guo
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Shuting Gao
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ying Zhou
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Bin Liu
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China.,Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Lanzhou, 730000, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yayuan Zheng
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Qiaozhen Zhou
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Junkai Zhai
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Zhengkun Gao
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Baoping Zhang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China.,Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Lanzhou, 730000, China.,Institute of Biomechanics and Medical Engineering, Lanzhou University, Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Ruimin Liu
- Gansu Province Hospital, Department of Oral and Maxillofacial Surgery, Lanzhou, 730000, China
| | - Kailiang Zhang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China.,Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Lanzhou, 730000, China
| |
Collapse
|
10
|
Stanwick M, Barkley C, Serra R, Kruggel A, Webb A, Zhao Y, Pietrzak M, Ashman C, Staats A, Shahid S, Peters SB. Tgfbr2 in Dental Pulp Cells Guides Neurite Outgrowth in Developing Teeth. Front Cell Dev Biol 2022; 10:834815. [PMID: 35265620 PMCID: PMC8901236 DOI: 10.3389/fcell.2022.834815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor β (TGFβ) plays an important role in tooth morphogenesis and mineralization. During postnatal development, the dental pulp (DP) mesenchyme secretes neurotrophic factors that guide trigeminal nerve fibers into and throughout the DP. This process is tightly linked with dentin formation and mineralization. Our laboratory established a mouse model in which Tgfbr2 was conditionally deleted in DP mesenchyme using an Osterix promoter-driven Cre recombinase (Tgfbr2 cko ). These mice survived postnatally with significant defects in bones and teeth, including reduced mineralization and short roots. Hematoxylin and eosin staining revealed reduced axon-like structures in the mutant mice. Reporter imaging demonstrated that Osterix-Cre activity within the tooth was active in the DP and derivatives, but not in neuronal afferents. Immunofluorescence staining for β3 tubulin (neuronal marker) was performed on serial cryosections from control and mutant molars on postnatal days 7 and 24 (P7, P24). Confocal imaging and pixel quantification demonstrated reduced innervation in Tgfbr2 cko first molars at both stages compared to controls, indicating that signals necessary to promote neurite outgrowth were disrupted by Tgfbr2 deletion. We performed mRNA-Sequence (RNA-Seq) and gene onotology analyses using RNA from the DP of P7 control and mutant mice to investigate the pathways involved in Tgfbr2-mediated tooth development. These analyses identified downregulation of several mineralization-related and neuronal genes in the Tgfbr2 cko DP compared to controls. Select gene expression patterns were confirmed by quantitative real-time PCR and immunofluorescence imaging. Lastly, trigeminal neurons were co-cultured atop Transwell filters overlying primary Tgfbr2 f/f DP cells. Tgfbr2 in the DP was deleted via Adenovirus-expressed Cre recombinase. Confocal imaging of axons through the filter pores showed increased axonal sprouting from neurons cultured with Tgfbr2-positive DP cells compared to neurons cultured alone. Axon sprouting was reduced when Tgfbr2 was knocked down in the DP cells. Immunofluorescence of dentin sialophosphoprotein in co-cultured DP cells confirmed reduced mineralization potential in cells with Tgfbr2 deletion. Both our proteomics and RNA-Seq analyses indicate that axonal guidance cues, particularly semaphorin signaling, were disrupted by Tgfbr2 deletion. Thus, Tgfbr2 in the DP mesenchyme appears to regulate differentiation and the cells' ability to guide neurite outgrowth during tooth mineralization and innervation.
Collapse
Affiliation(s)
- Monica Stanwick
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Courtney Barkley
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew Kruggel
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Chandler Ashman
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Allie Staats
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Shifa Shahid
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Sarah B. Peters
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States,Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Sarah B. Peters,
| |
Collapse
|
11
|
Tokavanich N, Wein MN, English JD, Ono N, Ono W. The Role of Wnt Signaling in Postnatal Tooth Root Development. FRONTIERS IN DENTAL MEDICINE 2021; 2:769134. [PMID: 35782525 PMCID: PMC9248717 DOI: 10.3389/fdmed.2021.769134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appropriate tooth root formation and tooth eruption are critical for achieving and maintaining good oral health and quality of life. Tooth eruption is the process through which teeth emerge from their intraosseous position to their functional position in the oral cavity. This temporospatial process occurs simultaneously with tooth root formation through a cascade of interactions between the epithelial and adjoining mesenchymal cells. Here, we will review the role of the Wnt system in postnatal tooth root development. This signaling pathway orchestrates the process of tooth root formation and tooth eruption in conjunction with several other major signaling pathways. The Wnt signaling pathway is comprised of the canonical, or Wnt/β-catenin, and the non-Canonical signaling pathway. The expression of multiple Wnt ligands and their downstream transcription factors including β-catenin is found in the cells in the epithelia and mesenchyme starting from the initiation stage of tooth development. The inhibition of canonical Wnt signaling in an early stage arrests odontogenesis. Wnt transcription factors continue to be present in dental follicle cells, the progenitor cells responsible for differentiation into cells constituting the tooth root and the periodontal tissue apparatus. This expression occurs concurrently with osteogenesis and cementogenesis. The conditional ablation of β-catenin in osteoblast and odontoblast causes the malformation of the root dentin and cementum. On the contrary, the overexpression of β-catenin led to shorter molar roots with thin and hypo-mineralized dentin, along with the failure of tooth eruption. Therefore, the proper expression of Wnt signaling during dental development is crucial for regulating the proliferation, differentiation, as well as epithelial-mesenchymal interaction essential for tooth root formation and tooth eruption.
Collapse
Affiliation(s)
- Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|