1
|
Yang S, Yan L, Chen L, Su G, Yang L, Gong L, Liu L. Cardiac PDK4 promotes neutrophilic PFKL methylation and drives the innate immune response in diabetic myocardial infarction. Pharmacol Res 2025; 215:107731. [PMID: 40222696 DOI: 10.1016/j.phrs.2025.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
NETosis plays a pivotal role in the innate immune response after diabetic myocardial infarction (MI), exerting a profound influence on the overall pathological process and potential recovery outcomes. The metabolism of diabetic cardiomyocyte actively creates a specialized micro environment for the innate immune response after MI. However, the mechanism by which cardiac metabolism drives NETosis remains unclear. Utilizing public databases of human MI sc-RNA datasets, we discovered that cardiomyocyte PDK4 expression mediates the intensification of glycolysis, which is strongly correlated with NETosis. Through mass spectrometry imaging and phenotype assessment, we ascertained that specific knockout of PDK4 in cardiomyocytes (PDK4fl/flMyh6Cre, male, 6 weeks) led to a reduction in NETosis by restraining micro environmental lactate (LA) production. In addition, the role of LA in promoting NETosis has been further corroborated by in vivo/in vitro experiments involving LA supplementation and its absence. Moreover, LA redirects neutrophil metabolic flux from glycolysis to the pentose-phosphate pathway (PPP). Mechanistically, LA triggers metabolic remodeling through the PRMT9-mediated methylation of PFKL at the R301 residue, resulting in PFKL inactivation and the consequent restriction of glycolysis. Our findings reveal the crucial role of cardiomyocyte metabolism in NETosis, shedding light on the role of LA as a vital signaling molecule in the crosstalk between cardiomyocytes and neutrophils. Importantly, we screened pitavastatin, a potential inhibitor of PDK4 among the FDA-approved drugs, and verified that it can alleviate NETosis in diabetic MI, which provides a rationale for drug selection in diabetic MI patients.
Collapse
Affiliation(s)
- Song Yang
- China-Japan Friendship Hospital, Beijing 100029, China
| | - Longxin Yan
- China-Japan Friendship Hospital, Beijing 100029, China
| | - Lang Chen
- China-Japan Friendship Hospital, Beijing 100029, China
| | - Gaijuan Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
| | - Long Yang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lili Gong
- China-Japan Friendship Hospital, Beijing 100029, China.
| | - Lihong Liu
- China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
2
|
Guo QW, Lin J, Shen YL, Zheng YJ, Chen X, Su M, Zhang JC, Wang JH, Tang H, Su GM, Li ZK, Fang DZ. Reduced hepatic AdipoR2 by increased glucocorticoid mediates effect of psychosocial stress to elevate serum cholesterol. Mol Cell Endocrinol 2024; 592:112282. [PMID: 38815796 DOI: 10.1016/j.mce.2024.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Understanding the effects of psychosocial stress on serum cholesterol may offer valuable insights into the relationship between psychological disorders and endocrine diseases. However, these effects and their underlying mechanisms have not been elucidated yet. Here we show that serum corticosterone, total cholesterol and low-density lipoprotein cholesterol (LDL-C) are elevated in a mouse model of psychosocial stress. Furthermore, alterations occur in AdipoR2-mediated AMPK and PPARα signaling pathways in liver, accompanied by a decrease in LDL-C clearance and an increase in cholesterol synthesis. These changes are further verified in wild-type and AdipoR2 overexpression HepG2 cells incubated with cortisol and AdipoR agonist, and are finally confirmed by treating wild-type and hepatic-specific AdipoR2 overexpression mice with corticosterone. We conclude that increased glucocorticoid mediates the effects of psychosocial stress to elevate serum cholesterol by inhibiting AdipoR2-mediated AMPK and PPARα signaling to decrease LDL-C clearance and increase cholesterol synthesis in liver.
Collapse
Affiliation(s)
- Qi Wei Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Yi Lin Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Yan Jiang Zheng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Mi Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Ji Cheng Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Jin Hua Wang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Hui Tang
- Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University Chongqing, PR China
| | - Guo Ming Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Zheng Ke Li
- Department of Thoracic/Head and Neck Medical Oncology, The MD Anderson Cancer Center, University of Texas Houston, TX, USA
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China.
| |
Collapse
|
3
|
Zhang X, Liu J, Sun Y, Zhou Q, Ding X, Chen X. Chinese herbal compound Huangqin Qingrechubi capsule reduces lipid metabolism disorder and inflammatory response in gouty arthritis via the LncRNA H19/APN/PI3K/AKT cascade. PHARMACEUTICAL BIOLOGY 2023; 61:541-555. [PMID: 36994890 PMCID: PMC10064824 DOI: 10.1080/13880209.2023.2191641] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Gouty arthritis (GA) is a characteristically inflammatory disease often associated with lipid metabolism disorder. Huangqin Qingrechubi capsule (HQC) has been used for the treatment of GA. OBJECTIVE To explore the mechanism of HQC in the treatment of GA. MATERIALS AND METHODS A total of 30 GA patients (GA group) and 30 healthy subjects [normal control (NC) group] were recruited. The GA group was treated with HQC (3.6 g/d) for 10 days. Lipid metabolism and inflammation indexes were detected. Five herbal names of HQC, or 'gouty arthritis', 'hyperlipidemia' and 'inflammation' were used as key words to search related databases for network pharmacological analysis. Subsequently, GA-fibroblast-like synoviocytes (FLSs) were stimulated with GA-peripheral blood mononuclear cells (PBMCs) (3:1) and treated with HQC drug-containing serum (20%). RT-qPCR, Western blot, and ELISA were conducted to further explore the mechanism of HQC in improving GA. RESULTS In clinical observation, HQC decreased the expression of lncRNA H19 and IL-1β, and increased the expression of adiponectin (APN) and IL-4 in the GA group (about half). Through network pharmacology, the PI3K/AKT signaling pathway was identified. Cell experiments showed that HQC treatment reduced the viability of GA-FLSs (49.61%), up-regulated the expression of IL-4 (155.18%), IL-10 (165.13%), and APN (31.24%), and down-regulated the expression of lncRNA H19 (33.70%), IL-1β (64.70%), TNF-α (78.32%), p-PI3K (48.80%), and p-AKT (53.48%). DISCUSSION AND CONCLUSIONS HQC improved lipid metabolism disorder and inflammatory response of GA by regulating the lncRNA H19/APN/PI3K/AKT. Maintaining the stability of lipid metabolism may be an effective way to alleviate GA.
Collapse
Affiliation(s)
- Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Qin Zhou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Liu S, Wu J, Stolarz A, Zhang H, Boerma M, Byrum SD, Rusch NJ, Ding Z. PCSK9 attenuates efferocytosis in endothelial cells and promotes vascular aging. Theranostics 2023; 13:2914-2929. [PMID: 37284459 PMCID: PMC10240829 DOI: 10.7150/thno.83914] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023] Open
Abstract
Aims: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that binds to low-density lipoprotein receptors. Efferocytosis is the process by which phagocytes remove apoptotic cells. Both PCSK9 and efferocytosis play important roles in regulating redox biology and inflammation, the key factors contributing to vascular aging. This study was designed to investigate the impact of PCSK9 on efferocytosis in endothelial cells (ECs) and its implications in vascular aging. Methods and Results: Studies were performed in primary human aortic ECs (HAECs) and primary mouse aortic ECs (MAECs) isolated from male wild-type (WT) and PCSK9-/- mice, and in young and aged mice treated with saline or the PCSK9 inhibitor Pep2-8. Our findings include that recombinant PCSK9 protein induces defective efferocytosis and aging marker senescence-associated-β-galactosidase (SA-β-gal) expression in ECs, while PCSK9-/- restores efferocytosis and inhibits SA-β-gal activity. Further studies in aged mice showed that endothelial deficiency of MerTK, a critical receptor for efferocytosis that allows phagocytes to detect the presence of apoptotic cells, may be an indicator of vascular dysfunction in the aortic arch. Pep2-8 treatment markedly restored efferocytosis in endothelium from the aged mice. A proteomics study in the aortic arch from aged mice revealed that Pep2-8 administration significantly downregulates expression of NOX4, MAPK subunits, NF-κB, and secretion of pro-inflammatory cytokines, all known to promote vascular aging. Immunofluorescent staining showed that Pep2-8 administration upregulates expression of eNOS and downregulates expression of pro-IL-1β, NF-κB and p22phox compared to saline treated group. Conclusions: These findings provide initial evidence for the ability of aortic ECs to accomplish efferocytosis and argue for a role of PCSK9 in attenuating EC efferocytosis, thereby leading to vascular dysfunction and acceleration in vascular aging.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jinzi Wu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amanda Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Huiliang Zhang
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Zufeng Ding
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
Abstract
PURPOSE The objectives of this study were to determine the preventive effects of statins on stroke. METHODS The published randomized controlled trials of statins for stroke prevention were searched from PubMed, EMBASE, Cochrane Library, and China Journal databases. We performed the meta-analysis via calculating the odds ratio (OR) and 95% confidence interval (CI) to study the mortality rate, incidence, and recurrence rate of patients with stroke in the prevention group and the control group. Chi-square-based Q test and I2 statistics were performed to test the potential heterogeneity; we conducted the sensitivity analysis to assess the stability of our analysis. Moreover, we performed the Begg and Egger tests to assess the publication bias. RESULTS Nine studies were included to perform meta-analysis, which included 15,497 patients (prevention group [n = 4114]; control group [n = 11383]). We found that the statins were not associated with the patients with stroke in mortality rate (OR = 1.00, 95% CI [0.82, 1.23]) and incidence (OR = 0.94, 95% CI [0.46, 1.92]) between the 2 groups. However, there was a significant differences in recurrence rate between the 2 groups (OR = 0.31, 95% CI [0.19, 0.51]). CONCLUSIONS Our findings indicated that the statins were associated with the patients with stroke in recurrence rate, but there was no significant correlation with the mortality and morbidity of patients with stroke.
Collapse
Affiliation(s)
- Xiaoxu San
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Jingyue National High-Tech Industrial Development Zone, Changchun, Jilin, China
| | - Zhiguo Lv
- Department of Encephalology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Peng Xu
- Department of Encephalology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jian Wang
- Department of Encephalology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- * Correspondence: Jian Wang, Department of Encephalology, The Affiliated Hospital of Changchun University of Chinese Medicine, 1478 Gongnong Road, Chaoyang District, Changchun, Jilin 130021, China (e-mail: )
| | - Tianye Lan
- Department of Encephalology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- * Correspondence: Jian Wang, Department of Encephalology, The Affiliated Hospital of Changchun University of Chinese Medicine, 1478 Gongnong Road, Chaoyang District, Changchun, Jilin 130021, China (e-mail: )
| |
Collapse
|
6
|
Song Y, Li S, He C. PPARγ Gene Polymorphisms, Metabolic Disorders, and Coronary Artery Disease. Front Cardiovasc Med 2022; 9:808929. [PMID: 35402540 PMCID: PMC8984027 DOI: 10.3389/fcvm.2022.808929] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 01/14/2023] Open
Abstract
Being activated by endogenous and exogenous ligands, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) enhances insulin sensitivity, promotes adipocyte differentiation, stimulates adipogenesis, and has the properties of anti-atherosclerosis, anti-inflammation, and anti-oxidation. The Human PPARγ gene (PPARG) contains thousands of polymorphic loci, among them two polymorphisms (rs10865710 and rs7649970) in the promoter region and two polymorphisms (rs1801282 and rs3856806) in the exonic region were widely reported to be significantly associated with coronary artery disease (CAD). Mechanistically, PPARG polymorphisms lead to abnormal expression of PPARG gene and/or dysfunction of PPARγ protein, causing metabolic disorders such as hypercholesterolemia and hypertriglyceridemia, and thereby increasing susceptibility to CAD.
Collapse
Affiliation(s)
- Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Chuan He,
| |
Collapse
|
7
|
Zhang Z, Hu Y, Liu W, Zhang X, Wang R, Li H, Sun D, Fang J. Yishen Capsule Alleviated Symptoms of Diabetic Nephropathy via NOD-like Receptor Signaling Pathway. Diabetes Metab Syndr Obes 2022; 15:2183-2195. [PMID: 35923253 PMCID: PMC9339947 DOI: 10.2147/dmso.s368867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To explore the mechanism of Yishen capsule against diabetic nephropathy (DN) based on the analysis of transcriptomics. MATERIAL AND METHODS SD rats (Male, SPF grade) were randomly divided into four groups, the normal group, the DN group, the Yishen capsule group and the resveratrol group. Urine and renal tissue samples were collected after feeding with physiological saline and above drugs for 8 weeks. 24-hour urine microalbumin protein was detected by ELISA. HE staining and PAS staining were performed on renal tissues. Differential gene expression in renal tissues was analyzed by transcriptome sequencing. The differentially expressed genes were analyzed by GO enrichment and KEGG enrichment, and verified by RT-PCR and immunohistochemistry staining. RESULTS The level of 24-hour urinary microalbumin in DN group was increased, while Yishen capsule treatment reversed the increasement of urinary microalbumin. Mesangial cell proliferation, matrix accumulation, edema and vacuolar degeneration of renal tubular epithelial cells and glycogen accumulation were observed in DN group. However, pathological phenotypes mentioned above were alleviated after Yisen capsule administration. This result indicates that Yishen capsule reversed pathological phenotypes of DN in rats. The expression of 261 genes were changed in Yishen capsule group compared with DN group. GO enrichment analysis and KEGG pathway analysis showed that these genes were implicated in pathways, including mineral absorption, adipocytokine signaling pathway, fatty acid biosynthesis, thyroid hormone synthesis, renin-angiotensin system, and NOD-like receptor signaling pathway. Based on previous reported study, the expression of key factors in NOD-like receptor signaling pathway was verified. RT-PCR and immunohistochemistry staining showed that the expression of NLRP3, Caspase-1 and IL-1β in renal tissues of DN group were increased (P < 0.05), which were decreased in Yishen capsule group (P < 0.05). CONCLUSION Yishen capsule reduced microalbuminuria and alleviated pathological changes in DN rats, which may be achieved by regulating NOD-like receptor signaling pathway.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Shanxi Medical University, Taiyuan, People’s Republic of China
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yaling Hu
- Shanxi Medical University, Taiyuan, People’s Republic of China
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Wenyuan Liu
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaodong Zhang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ruihua Wang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hui Li
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Dalin Sun
- Shanxi Medical University, Taiyuan, People’s Republic of China
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jingai Fang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Jingai Fang, Department of Nephrology, First Hospital of Shanxi Medical University, 85 Jiefangnan Road, Taiyuan, 030001, People’s Republic of China, Email
| |
Collapse
|