1
|
Korbecki J, Bosiacki M, Pilarczyk M, Kot M, Defort P, Walaszek I, Chlubek D, Baranowska-Bosiacka I. The CXCL1-CXCR2 Axis as a Component of Therapy Resistance, a Source of Side Effects in Cancer Treatment, and a Therapeutic Target. Cancers (Basel) 2025; 17:1674. [PMID: 40427171 DOI: 10.3390/cancers17101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
CXCL1 (Gro-α, MGSA) is a chemokine functionally similar to CXCL8/IL-8, as both activate the same receptor, CXCR2. CXCL1 levels are frequently elevated in tumors compared to healthy tissue, where they play a key role in promoting cancer cell migration, angiogenesis, and neutrophil recruitment. While the involvement of CXCL1 in tumor progression is well established, its relevance to cancer therapy remains underexplored. This review examines the therapeutic potential of targeting CXCL1 and its receptor, CXCR2, in cancer treatment. It discusses anti-CXCL1 antibodies and CXCR2 antagonists, including AZD5069, SB225002, SCH-479833, navarixin/SCH-527123, ladarixin/DF2156A, and reparixin, as well as strategies to enhance CXCR2 expression in lymphocytes during adoptive cell therapy to improve immunotherapy outcomes. Particular attention is given to the role of CXCL1 in treatment resistance, including resistance to chemotherapy, radiotherapy, and anti-angiogenic therapy. Cancer therapies often upregulate CXCL1 expression, which in turn drives treatment resistance. Additionally, this review explores the contribution of CXCL1 to therapy-induced side effects, such as chemotherapy-induced metastasis, neuropathy, nephrotoxicity, diarrhea, and cardiotoxicity. CXCR2 inhibitors are well tolerated by patients in clinical trials. However, the limited number of studies evaluating these agents in combination with standard chemotherapy precludes any definitive conclusions.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Maciej Pilarczyk
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland
| | - Marcin Kot
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland
| | - Piotr Defort
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland
| | - Ireneusz Walaszek
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Masrour M, Moeinafshar A, Poopak A, Razi S, Rezaei N. The role of CXC chemokines and receptors in breast cancer. Clin Exp Med 2025; 25:128. [PMID: 40278951 PMCID: PMC12031896 DOI: 10.1007/s10238-025-01662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
CXC chemokines are a class of cytokines possessing chemotactic properties. Studies indicate that CXC chemokines exhibit dysregulation in miscellaneous cancer categories and are significantly associated with the advancement of tumors. Breast cancer is a commonly diagnosed and fatal cancer among the female population. Breast cancer pathogenesis and progression involve various mechanisms, including invasion, metastasis, angiogenesis, and inflammation. Chemokines and their receptors are involved in all of these processes. The CXC chemokine receptors (CXCRs) and their related ligands have attracted considerable attention due to their multifaceted functions in facilitating and controlling tumor proliferation. CXCRs are expressed by both cancer cells and immune cells, and they play a crucial role in regulating the tumor microenvironment and the immune response. This review aims to assess the potential of CXCRs and CXC chemokines as therapeutic targets or biomarkers for personalized therapy. Additionally, it provides an overview of the current understanding of the expression, function, and prognostic relevance of CXCRs in breast cancer. Furthermore, the challenges and potential prospects pertaining to CXCR investigation in breast cancer are deliberated.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirhossein Poopak
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific and Education Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Kang W, Wang C, Wang M, Liu M, Hu W, Liang X, Yang J, Zhang Y. A key regulator of tumor-associated neutrophils: the CXCR2 chemokine receptor. J Mol Histol 2024; 55:1051-1061. [PMID: 39269537 DOI: 10.1007/s10735-024-10260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
In recent years, with the advance of research, the role of tumor-associated neutrophils (TANs) in tumors has become a research hotspot. As important effector cells in the innate immune system, neutrophils play a key role in the immune and inflammatory responses of the body. As the first line of defense against bacterial and fungal infections, neutrophils have the ability to kill invading pathogens. In the pathological state of malignant tumors, the phenotype of neutrophils is altered and has an important regulatory function in tumor development. The C-X-C motif chemokine receptor 2(CXCR2) is a key molecule that mediates the migration and aggregation signaling pathway of immune cells, especially neutrophils. This review focuses on the regulation of CXCR2 on TANs in the process of tumorigenesis and development, and emphasizes the application significance of CXCR2 inhibitors in blocking the migration of TANs to tumors.
Collapse
Affiliation(s)
- Wenyan Kang
- Department of Gynecology, The First Affiliated Hospital, Hengyang School of Medicine, University of South China, Hengyang, 421001, Hunan, P.R. China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Meiqi Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Juanli Yang
- Department of Gynecology, The First Affiliated Hospital, Hengyang School of Medicine, University of South China, Hengyang, 421001, Hunan, P.R. China.
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China.
| |
Collapse
|
4
|
Bergeron P, Dos Santos M, Sitterle L, Tarlet G, Lavigne J, Liu W, Gerbé de Thoré M, Clémenson C, Meziani L, Schott C, Mazzaschi G, Berthelot K, Benadjaoud MA, Milliat F, Deutsch E, Mondini M. Non-homogenous intratumor ionizing radiation doses synergize with PD1 and CXCR2 blockade. Nat Commun 2024; 15:8845. [PMID: 39397001 PMCID: PMC11471822 DOI: 10.1038/s41467-024-53015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
The efficacy and side effects of radiotherapy (RT) depend on parameters like dose and the volume of irradiated tissue. RT induces modulations of the tumor immune microenvironment (TIME) that are dependent on the dose. Low dose RT (LDRT, i.e., single doses of 0.5-2 Gy) has been shown to promote immune infiltration into the tumor. Here we hypothesize that partial tumor irradiation combining the immunostimulatory/non-lethal properties of LDRT with cell killing/shrinkage properties of high dose RT (HDRT) within the same tumor mass could enhance anti-tumor responses when combined with immunomodulators. In models of colorectal and breast cancer in immunocompetent female mice, partial irradiation (PI) with millimetric precision to deliver LDRT (2 Gy) and HDRT (16 Gy) within the same tumor induces substantial tumor control when combined with anti-PD1. Using flow cytometry, cytokine profiling and single-cell RNA sequencing, we identify a crosstalk between the TIME of the differentially irradiated tumor volumes. PI reshapes tumor-infiltrating CD8+ T cells into more cytotoxic and interferon-activated phenotypes but also increases the infiltration of pro-tumor neutrophils driven by CXCR2. The combination of the CXCR2 antagonist SB225002 with PD1 blockade and PI improves tumor control and mouse survival. Our results suggest a strategy to reduce RT toxicity and improve the therapeutic index of RT and immune checkpoint combinations.
Collapse
Affiliation(s)
- Paul Bergeron
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Morgane Dos Santos
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Lisa Sitterle
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Georges Tarlet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Jeremy Lavigne
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Winchygn Liu
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | | | - Céline Clémenson
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Lydia Meziani
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Cathyanne Schott
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Giulia Mazzaschi
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Kevin Berthelot
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Eric Deutsch
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Michele Mondini
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
5
|
Dong J, Chen J, Wu Y, Yan J. GTSE1 promotes nasopharyngeal carcinoma proliferation and angiogenesis by upregulating STMN1. Cell Div 2024; 19:16. [PMID: 38698443 PMCID: PMC11064356 DOI: 10.1186/s13008-024-00119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant tumor with poor survival rate. G2 and S phase-expressed-1 (GTSE1) takes part in the progression of diverse tumors as an oncogene, but its role and potential mechanism in NPC remain unknown. METHODS The GTSE1 expression was analyzed by western blot in NPC tissues and cells. Knock-down experiments were conducted to determine the function of GTSE1 in NPC by cell counting kit-8, the 5-ethynyl-2'-deoxyuridine (EdU) incorporation experiment, cell scratch wound-healing experiment, transwell assays, tube forming experiment and western blot. In addition, the in vivo role of GTSE1 was addressed in tumor-bearing mice. RESULTS The expression of was increased in NPC. Silencing of GTSE1 suppressed cell viability, the percent of EdU positive cells, and the number of invasion cells and tubes, but enhanced the scratch ratio in NPC cells. Mechanically, downregulation of GTSE1 decreased the expressions of FOXM1 and STMN1, which were restored with the upregulation of FOXM1. Increased expression of STMN1 reversed the effects of the GTSE1 silencing on proliferation, migration, invasion and angiogenesis of NPC cells. Furthermore, knockdown of GTSE1 repressed the tumor volume and tumor weight of xenografted mice. CONCLUSION GTSE1 was highly expressed in NPC, and silencing of GTSE1 ameliorated the malignant processes of NPC cells by upregulating STMN1, suggesting a possible therapeutical target for NPC.
Collapse
Affiliation(s)
- Jiadi Dong
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China
| | - Jingjing Chen
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China.
| | - Yidong Wu
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China
| | - Jiangyu Yan
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China
| |
Collapse
|
6
|
Ramon-Gil E, Geh D, Leslie J. Harnessing neutrophil plasticity for HCC immunotherapy. Essays Biochem 2023; 67:941-955. [PMID: 37534829 PMCID: PMC10539947 DOI: 10.1042/ebc20220245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Neutrophils, until recently, have typically been considered a homogeneous population of terminally differentiated cells with highly conserved functions in homeostasis and disease. In hepatocellular carcinoma (HCC), tumour-associated neutrophils (TANs) are predominantly thought to play a pro-tumour role, promoting all aspects of HCC development and progression. Recent developments in single-cell technologies are now providing a greater insight and appreciation for the level of cellular heterogeneity displayed by TANs in the HCC tumour microenvironment, which we have been able to correlate with other TAN signatures in datasets for gastric cancer, pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). TANs with classical pro-tumour signatures have been identified as well as neutrophils primed for anti-tumour functions that, if activated and expanded, could become a potential therapeutic approach. In recent years, therapeutic targeting of neutrophils in HCC has been typically focused on impairing the recruitment of pro-tumour neutrophils. This has now been coupled with immune checkpoint blockade with the aim to stimulate lymphocyte-mediated anti-tumour immunity whilst impairing neutrophil-mediated immunosuppression. As a result, neutrophil-directed therapies are now entering clinical trials for HCC. Pharmacological targeting along with ex vivo reprogramming of neutrophils in HCC patients is, however, in its infancy and a greater understanding of neutrophil heterogeneity, with a view to exploit it, may pave the way for improved immunotherapy outcomes. This review will cover the recent developments in our understanding of neutrophil heterogeneity in HCC and how neutrophils can be harnessed to improve HCC immunotherapy.
Collapse
Affiliation(s)
- Erik Ramon-Gil
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| |
Collapse
|
7
|
Lizcano-Meneses S, Hernández-Pando R, García-Aguirre I, Bonilla-Delgado J, Alvarado-Castro VM, Cisneros B, Gariglio P, Cortés-Malagón EM. Combined Inhibition of Indolamine-2,3-Dioxygenase 1 and C-X-C Chemokine Receptor Type 2 Exerts Antitumor Effects in a Preclinical Model of Cervical Cancer. Biomedicines 2023; 11:2280. [PMID: 37626777 PMCID: PMC10452145 DOI: 10.3390/biomedicines11082280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cervical cancer is a public health problem diagnosed in advanced stages, and its main risk factor is persistent high-risk human papillomavirus infection. Today, it is necessary to study new treatment strategies, such as immunotherapy, that use different targets of the tumor microenvironment. In this study, the K14E7E2 mouse was used as a cervical cancer model to evaluate the inhibition of indolamine-2,3-dioxygenase 1 (IDO-1) and C-X-C chemokine receptor type 2 (CXCR-2) as potential anti-tumor targets. DL-1MT and SB225002 were administered for 30 days in two regimens (R1 and R2) based on combination and single therapy approaches to inhibit IDO-1 and CXCR-2, respectively. Subsequently, the reproductive tracts were resected and analyzed to determine the tumor areas, and IHCs were performed to assess proliferation, apoptosis, and CD8 cellular infiltration. Our results revealed that combined inhibition of IDO-1 and CXCR-2 significantly reduces the areas of cervical tumors (from 196.0 mm2 to 58.24 mm2 in R1 and 149.6 mm2 to 52.65 mm2 in R2), accompanied by regions of moderate dysplasia, decreased papillae, and reduced inflammation. Furthermore, the proliferation diminished, and apoptosis and intra-tumoral CD8 T cells increased. In conclusion, the combined inhibition of IDO-1 and CXCR-2 is helpful in the antitumor response against preclinical cervical cancer.
Collapse
Affiliation(s)
- Solangy Lizcano-Meneses
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Rogelio Hernández-Pando
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico
| | - Ian García-Aguirre
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnologico y de Estudios Superiores de Monterrey, Ciudad de México, Mexico City 14380, Mexico
| | - José Bonilla-Delgado
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnologico y de Estudios Superiores de Monterrey, Toluca 50110, Mexico
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | | | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Enoc Mariano Cortés-Malagón
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| |
Collapse
|
8
|
Ishida Y, Zhang S, Kuninaka Y, Ishigami A, Nosaka M, Harie I, Kimura A, Mukaida N, Kondo T. Essential Involvement of Neutrophil Elastase in Acute Acetaminophen Hepatotoxicity Using BALB/c Mice. Int J Mol Sci 2023; 24:7845. [PMID: 37175553 PMCID: PMC10177873 DOI: 10.3390/ijms24097845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Intense neutrophil infiltration into the liver is a characteristic of acetaminophen-induced acute liver injury. Neutrophil elastase is released by neutrophils during inflammation. To elucidate the involvement of neutrophil elastase in acetaminophen-induced liver injury, we investigated the efficacy of a potent and specific neutrophil elastase inhibitor, sivelestat, in mice with acetaminophen-induced acute liver injury. Intraperitoneal administration of 750 mg/kg of acetaminophen caused severe liver damage, such as elevated serum transaminase levels, centrilobular hepatic necrosis, and neutrophil infiltration, with approximately 50% mortality in BALB/c mice within 48 h of administration. However, in mice treated with sivelestat 30 min after the acetaminophen challenge, all mice survived, with reduced serum transaminase elevation and diminished hepatic necrosis. In addition, mice treated with sivelestat had reduced NOS-II expression and hepatic neutrophil infiltration after the acetaminophen challenge. Furthermore, treatment with sivelestat at 3 h after the acetaminophen challenge significantly improved survival. These findings indicate a new clinical application for sivelestat in the treatment of acetaminophen-induced liver failure through mechanisms involving the regulation of neutrophil migration and NO production.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | | | | | | | | | | | | | | | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| |
Collapse
|
9
|
Hu J, Pan M, Wang Y, Zhu Y, Wang M. Functional plasticity of neutrophils after low- or high-dose irradiation in cancer treatment - A mini review. Front Immunol 2023; 14:1169670. [PMID: 37063873 PMCID: PMC10098001 DOI: 10.3389/fimmu.2023.1169670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Over the last several decades, radiotherapy has been considered the primary treatment option for a broad range of cancer types, aimed at prolonging patients' survival and slowing down tumor regression. However, therapeutic outcomes of radiotherapy remain limited, and patients suffer from relapse shortly after radiation. Neutrophils can initiate an immune response to infection by releasing cytokines and chemokines to actively combat pathogens. In tumor immune microenvironment, tumor-derived signals reprogram neutrophils and induce their heterogeneity and functional versatility to promote or inhibit tumor growth. In this review, we present an overview of the typical phenotypes of neutrophils that emerge after exposure to low- and high-dose radiation. These phenotypes hold potential for developing synergistic therapeutic strategies to inhibit immunosuppressive activity and improve the antitumor effects of neutrophils to render radiation therapy as a more effective strategy for cancer patients, through tumor microenvironment modulation.
Collapse
Affiliation(s)
- Jing Hu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Mingyue Pan
- Faculty of Law, University of Freiburg, Freiburg, Germany
| | - Yixi Wang
- Department of Rehabilitation Medicine, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Yujie Zhu
- Department of Obstetrics and Gynecology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Meidan Wang
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- *Correspondence: Meidan Wang,
| |
Collapse
|
10
|
Han ZJ, Li YB, Yang LX, Cheng HJ, Liu X, Chen H. Roles of the CXCL8-CXCR1/2 Axis in the Tumor Microenvironment and Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010137. [PMID: 35011369 PMCID: PMC8746913 DOI: 10.3390/molecules27010137] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
In humans, Interleukin-8 (IL-8 or CXCL8) is a granulocytic chemokine with multiple roles within the tumor microenvironment (TME), such as recruiting immunosuppressive cells to the tumor, increasing tumor angiogenesis, and promoting epithelial-to-mesenchymal transition (EMT). All of these effects of CXCL8 on individual cell types can result in cascading alterations to the TME. The changes in the TME components such as the cancer-associated fibroblasts (CAFs), the immune cells, the extracellular matrix, the blood vessels, or the lymphatic vessels further influence tumor progression and therapeutic resistance. Emerging roles of the microbiome in tumorigenesis or tumor progression revealed the intricate interactions between inflammatory response, dysbiosis, metabolites, CXCL8, immune cells, and the TME. Studies have shown that CXCL8 directly contributes to TME remodeling, cancer plasticity, and the development of resistance to both chemotherapy and immunotherapy. Further, clinical data demonstrate that CXCL8 could be an easily measurable prognostic biomarker in patients receiving immune checkpoint inhibitors. The blockade of the CXCL8-CXCR1/2 axis alone or in combination with other immunotherapy will be a promising strategy to improve antitumor efficacy. Herein, we review recent advances focusing on identifying the mechanisms between TME components and the CXCL8-CXCR1/2 axis for novel immunotherapy strategies.
Collapse
Affiliation(s)
- Zhi-Jian Han
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| | - Yang-Bing Li
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Lu-Xi Yang
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Hui-Juan Cheng
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Xin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
| | - Hao Chen
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| |
Collapse
|
11
|
Urbantat RM, Jelgersma C, Brandenburg S, Nieminen-Kelhä M, Kremenetskaia I, Zollfrank J, Mueller S, Rubarth K, Koch A, Vajkoczy P, Acker G. Tumor-Associated Microglia/Macrophages as a Predictor for Survival in Glioblastoma and Temozolomide-Induced Changes in CXCR2 Signaling with New Resistance Overcoming Strategy by Combination Therapy. Int J Mol Sci 2021; 22:ijms222011180. [PMID: 34681839 PMCID: PMC8538679 DOI: 10.3390/ijms222011180] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor recurrence is the main challenge in glioblastoma (GBM) treatment. Gold standard therapy temozolomide (TMZ) is known to induce upregulation of IL8/CXCL2/CXCR2 signaling that promotes tumor progression and angiogenesis. Our aim was to verify the alterations on this signaling pathway in human GBM recurrence and to investigate the impact of TMZ in particular. Furthermore, a combi-therapy of TMZ and CXCR2 antagonization was established to assess the efficacy and tolerability. First, we analyzed 76 matched primary and recurrent GBM samples with regard to various histological aspects with a focus on the role of TMZ treatment and the assessment of predictors of overall survival (OS). Second, the combi-therapy with TMZ and CXCR2-antagonization was evaluated in a syngeneic mouse tumor model with in-depth immunohistological investigations and subsequent gene expression analyses. We observed a significantly decreased infiltration of tumor-associated microglia/macrophages (TAM) in recurrent tumors, while a high TAM infiltration in primary tumors was associated with a reduced OS. Additionally, more patients expressed IL8 in recurrent tumors and TMZ therapy maintained CXCL2 expression. In mice, enhanced anti-tumoral effects were observed after combi-therapy. In conclusion, high TAM infiltration predicts a survival disadvantage, supporting findings of the tumor-promoting phenotype of TAMs. Furthermore, the combination therapy seemed to be promising to overcome CXCR2-mediated resistance.
Collapse
Affiliation(s)
- Ruth M. Urbantat
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Claudius Jelgersma
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Susan Brandenburg
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Irina Kremenetskaia
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Julia Zollfrank
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kerstin Rubarth
- Experimental and Clinical Research Center, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Gueliz Acker
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
- Clinician Scientist Program, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-660357
| |
Collapse
|