1
|
Boyacıoğlu Ö, Varan C, Bilensoy E, Aykut ZG, Reçber T, Nemutlu E, Kılıç N, Korkusuz P. A novel injectable nanotherapeutic platform increasing the bioavailability and anti-tumor efficacy of Arachidonylcyclopropylamide on an ectopic non-small cell lung cancer xenograft model: A randomized controlled trial. Int J Pharm 2025; 670:125153. [PMID: 39746587 DOI: 10.1016/j.ijpharm.2024.125153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Rapid progressing non-small cell lung adenocarcinoma (NSCLC) decreases treatment success. Cannabinoids emerge as drug candidates for NSCLC due to their anti-tumoral capabilities. We previously reported the controlled release of Arachidonylcyclopropylamide (ACPA) selectively targeting cannabinoid 1 (CB1) receptor in NSCLC cells in vitro. Hydrophobic polymers like polycaprolactone (PCL) offer prolonged circulation time and slower drug clearance which is suitable for hydrophobic molecules like ACPA. Thus, the extended circulation time with enhanced bioavailability and half-life of nanoparticular ACPA is crucial for its therapeutic performance in the tumor area. We assumed that a novel high technology-controlled release system increasing the bioavailability of ACPA compared to free ACPA could be transferred to the clinic when validated in vivo. Plasma profile of ACPA and ACPA-loaded PCL-based nanomedicine by LC-MS/MS and complete blood count (CBC) was assessed in wild-type Balb/c mice. Tumor growth in nanomedicine-applied NSCLC-induced athymic nude mice was assessed using bioluminescence imaging (BLI) and caliper measurements, histomorphometry, immunohistochemistry, TUNEL assay, and Western blot on days 7-21. Injectable NanoACPA increased its systemic exposure to tissues 5.5 times and maximum plasma concentration 6 times higher than free ACPA by substantially improving bioavailability. The potent effect of NanoACPA lasted for at least two days on ectopic NSCLC model through Akt/PI3K, Ras/MEK/Erk, and JNK pathways that diminished Ki-67 proliferative and promoted TUNEL apoptotic cell scores on days 7-21. The output reveals that NanoACPA platform could be a chemotherapeutic for NSCLC in the clinic following scale-up GLP/GMP-based phase trials, owing to therapeutic efficacy at a safe low dose window.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Hacettepe University, Graduate School of Science and Engineering, Department of Bioengineering, 06800, Beytepe, Ankara, Turkey; Atılım University, Faculty of Medicine, Department of Medical Biochemistry, 06830, Gölbaşı, Ankara, Turkey
| | - Cem Varan
- Hacettepe University, Graduate School of Science and Engineering, Department of Nanotechnology and Nanomedicine, 06800, Beytepe, Ankara, Turkey
| | - Erem Bilensoy
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Sıhhiye, Ankara, Turkey
| | - Zaliha Gamze Aykut
- Bilkent University, Faculty of Science, Department of Molecular Biology and Genetics, 06800, Cankaya, Ankara, Turkey
| | - Tuba Reçber
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Sıhhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Sıhhiye, Ankara, Turkey
| | - Nedret Kılıç
- Atılım University, Faculty of Medicine, Department of Medical Biochemistry, 06830, Gölbaşı, Ankara, Turkey
| | - Petek Korkusuz
- Hacettepe University, Faculty of Medicine, Department of Histology and Embryology, 06100, Sıhhiye, Ankara, Turkey; METU MEMS Center, 06530, Ankara, Turkey.
| |
Collapse
|
2
|
Zhang J, Wickizer C, Ding W, Van R, Yang L, Zhu B, Yang J, Wang Y, Wang Y, Xu Y, Zhang C, Shen S, Wang C, Shao Y, Ran C. In vivo three-dimensional brain imaging with chemiluminescence probes in Alzheimer's disease models. Proc Natl Acad Sci U S A 2023; 120:e2310131120. [PMID: 38048460 PMCID: PMC10723133 DOI: 10.1073/pnas.2310131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Optical three-dimensional (3D) molecular imaging is highly desirable for providing precise distribution of the target-of-interest in disease models. However, such 3D imaging is still far from wide applications in biomedical research; 3D brain optical molecular imaging, in particular, has rarely been reported. In this report, we designed chemiluminescence probes with high quantum yields, relatively long emission wavelengths, and high signal-to-noise ratios to fulfill the requirements for 3D brain imaging in vivo. With assistance from density-function theory (DFT) computation, we designed ADLumin-Xs by locking up the rotation of the double bond via fusing the furan ring to the phenyl ring. Our results showed that ADLumin-5 had a high quantum yield of chemiluminescence and could bind to amyloid beta (Aβ). Remarkably, ADLumin-5's radiance intensity in brain areas could reach 4 × 107 photon/s/cm2/sr, which is probably 100-fold higher than most chemiluminescence probes for in vivo imaging. Because of its strong emission, we demonstrated that ADLumin-5 could be used for in vivo 3D brain imaging in transgenic mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA02129
| | - Carly Wickizer
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK73019
| | - Weihua Ding
- Department of Anesthesia Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital Harvard Medical School, Boston, MA02114
| | - Richard Van
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK73019
| | - Liuyue Yang
- Department of Anesthesia Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital Harvard Medical School, Boston, MA02114
| | - Biyue Zhu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA02129
| | - Jun Yang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA02129
| | - Yanli Wang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA02129
| | - Yongle Wang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA02129
| | - Yulong Xu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA02129
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, McCance Center for Brain Health Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital Harvard Medical School, Charlestown, MA02129
| | - Shiqian Shen
- Department of Anesthesia Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital Harvard Medical School, Boston, MA02114
| | - Changning Wang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA02129
| | - Yihan Shao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK73019
| | - Chongzhao Ran
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA02129
| |
Collapse
|
3
|
Zhang J, Wickizer C, Ding W, Van R, Yang L, Zhu B, Yang J, Zhang C, Shen S, Shao Y, Ran C. In Vivo Three-dimensional Brain Imaging with Chemiluminescence Probes in Alzheimer's Disease Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547411. [PMID: 37461700 PMCID: PMC10350002 DOI: 10.1101/2023.07.02.547411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Optical three-dimensional (3D) molecular imaging is highly desirable for providing precise distribution of the target-of-interest in disease models. However, such 3D imaging is still far from wide applications in biomedical research; 3D brain optical molecular imaging, in particular, has rarely been reported. In this report, we designed chemiluminescence probes with high quantum yields (QY), relatively long emission wavelengths, and high signal-to-noise ratios (SNRs) to fulfill the requirements for 3D brain imaging in vivo. With assistance from density-function theory (DFT) computation, we designed ADLumin-Xs by locking up the rotation of the double-bond via fusing the furan ring to the phenyl ring. Our results showed that ADLumin-5 had a high quantum yield of chemiluminescence and could bind to amyloid beta (Aβ). Remarkably, ADLumin-5's radiance intensity in brain areas could reach 4×107 photon/s/cm2/sr, which is probably 100-fold higher than most chemiluminescence probes for in vivo imaging. Because of its strong emission, we demonstrated that ADLumin-5 could be used for in vivo 3D brain imaging in transgenic mouse models of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jing Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
| | - Carly Wickizer
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Weihua Ding
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Richard Van
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Liuyue Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
| | - Jun Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
4
|
Zhang W, Cui Y, Du Y, Yang Y, Fang T, Lu F, Kong W, Xiao C, Shi J, Reid LM, He Z. Liver cell therapies: cellular sources and grafting strategies. Front Med 2023; 17:432-457. [PMID: 37402953 DOI: 10.1007/s11684-023-1002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/27/2023] [Indexed: 07/06/2023]
Abstract
The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yuan Du
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yong Yang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ting Fang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Fengfeng Lu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Canjun Xiao
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Jun Shi
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Lola M Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China.
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|