1
|
Dai C, Qianjiang H, Fu R, Yang H, Shi A, Luo H. Epigenetic and epitranscriptomic role of lncRNA in carcinogenesis (Review). Int J Oncol 2025; 66:29. [PMID: 40017127 PMCID: PMC11900940 DOI: 10.3892/ijo.2025.5735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Long non‑coding RNAs (lncRNAs) are key players in the regulation of gene expression by mediating epigenetic and epitranscriptomic modification. Dysregulation of lncRNAs is implicated in tumor initiation, progression and metastasis. lncRNAs modulate chromatin structure and gene transcription by recruiting epigenetic regulators, including DNA‑ or histone‑modifying enzymes. Additionally, lncRNAs mediate chromatin remodeling and enhancer‑promoter long‑range chromatin interactions to control oncogene expression by recruiting chromatin organization‑associated proteins, thereby promoting carcinogenesis. Furthermore, lncRNAs aberrantly induce oncogene expression by mediating epitranscriptomic modifications, including RNA methylation and RNA editing. The present study aimed to summarize the regulatory mechanisms of lncRNAs in cancer to unravel the complex interplay between lncRNAs and epigenetic/epitranscriptomic regulators in carcinogenesis. The present review aimed to provide a novel perspective on the epigenetic and epitranscriptomic roles of lncRNAs in carcinogenesis to facilitate identification of potential biomarkers and therapeutic targets for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunfei Dai
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Haoyue Qianjiang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Ruishuang Fu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Huimin Yang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Aiqin Shi
- Xianghu Laboratory, Hangzhou, Zhejiang 311231, P.R. China
| | - Huacheng Luo
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
2
|
Wu Z, Chen Y, Jiang D, Pan Y, Tang T, Ma Y, Shapaer T. Mitochondrial-related drug resistance lncRNAs as prognostic biomarkers in laryngeal squamous cell carcinoma. Discov Oncol 2024; 15:785. [PMID: 39692950 PMCID: PMC11655928 DOI: 10.1007/s12672-024-01690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of the head and neck that significantly impacts patients' quality of life, with chemotherapy resistance notably affecting prognosis. This study aims to identify prognostic biomarkers to optimize treatment strategies for LSCC. Using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), combined with mitochondrial gene database analysis, we identified mitochondrial lncRNAs associated with drug resistance genes. Key long non-coding RNAs (lncRNAs) were selected through univariate Cox regression and Lasso regression, and a multivariate Cox regression model was constructed to predict prognosis. We further analyzed the differences in immune function and biological pathway enrichment between high- and low-risk groups, developed a nomogram, and compared drug sensitivity. Results showed that the prognostic model based on seven mitochondrial lncRNAs could serve as an independent prognostic factor, with Area Under the Curve (AUC) values of 0.746, 0.827, and 0.771 at 1, 3, and 5 years, respectively, outperforming some existing models, demonstrating high predictive performance. Significant differences were observed in immune function and drug sensitivity between the high- and low-risk groups. The risk prediction model incorporating seven drug resistance-related mitochondrial lncRNAs can accurately and independently predict the prognosis of LSCC patients.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Otorhinolaryngology Head and Neck Surgery, The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550003, Guizhou, China
| | - Yi Chen
- Department of Breast and Thyroid Surgery, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Dizhi Jiang
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Yipeng Pan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yifei Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550003, Guizhou, China.
| | - Tiannake Shapaer
- Department of Gastrointestinal Surgery, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
3
|
Wang D, Jiang J, Wang M, Li K, Liang H, Wang N, Liu W, Wang M, Zhou S, Zhang M, Xiao Y, Shen X, Li Z, Wu W, Lin X, Xiang X, Xie Q, Liu W, Zhou X, Tang Q, Zhou W, Yang L, Chuong CM, Lei M. Mitophagy Promotes Hair Regeneration by Activating Glutathione Metabolism. RESEARCH (WASHINGTON, D.C.) 2024; 7:0433. [PMID: 39091635 PMCID: PMC11292124 DOI: 10.34133/research.0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/30/2024] [Indexed: 08/04/2024]
Abstract
Mitophagy maintains tissue homeostasis by self-eliminating defective mitochondria through autophagy. How mitophagy regulates stem cell activity during hair regeneration remains unclear. Here, we found that mitophagy promotes the proliferation of hair germ (HG) cells by regulating glutathione (GSH) metabolism. First, single-cell RNA sequencing, mitochondrial probe, transmission electron microscopy, and immunofluorescence staining showed stronger mitochondrial activity and increased mitophagy-related gene especially Prohibitin 2 (Phb2) expression at early-anagen HG compared to the telogen HG. Mitochondrial inner membrane receptor protein PHB2 binds to LC3 to initiate mitophagy. Second, molecular docking and functional studies revealed that PHB2-LC3 activates mitophagy to eliminate the damaged mitochondria in HG. RNA-seq, single-cell metabolism, immunofluorescence staining, and functional validation discovered that LC3 promotes GSH metabolism to supply energy for promoting HG proliferation. Third, transcriptomics analysis and immunofluorescence staining indicated that mitophagy was down-regulated in the aged compared to young-mouse HG. Activating mitophagy and GSH pathways through small-molecule administration can reactivate HG cell proliferation followed by hair regeneration in aged hair follicles. Our findings open up a new avenue for exploring autophagy that promotes hair regeneration and emphasizes the role of the self-elimination effect of mitophagy in controlling the proliferation of HG cells by regulating GSH metabolism.
Collapse
Affiliation(s)
- Dehuan Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Ke Li
- Shenzhen Accompany Technology Cooperation, Ltd, Shenzhen 518000, China
| | - Huan Liang
- Shenzhen Accompany Technology Cooperation, Ltd, Shenzhen 518000, China
| | - Nian’ou Wang
- Shenzhen Accompany Technology Cooperation, Ltd, Shenzhen 518000, China
| | - Weiwei Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Miaomiao Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Siyi Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Man Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Yang Xiao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Xinyu Shen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Zeming Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
- Three Gorges Hospital,
Chongqing University, Chongqing 404000, China
| | - Xia Lin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
- Three Gorges Hospital,
Chongqing University, Chongqing 404000, China
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Xun Zhou
- Department of Dermatology and Cosmetology,
The First Affiliated Hospital of Chongqing College of Traditional Chinese Medicine, Chongqing 400021, China
| | - Qu Tang
- Three Gorges Hospital,
Chongqing University, Chongqing 404000, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment,
Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine,
University of Southern California, Los Angeles, CA 90033, USA
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Moral-Turón C, Asencio-Cortés G, Rodriguez-Diaz F, Rubio A, Navarro AG, Brokate-Llanos AM, Garzón A, Muñoz MJ, Pérez-Pulido AJ. ASACO: Automatic and Serial Analysis of CO-expression to discover gene modifiers with potential use in drug repurposing. Brief Funct Genomics 2024; 23:484-494. [PMID: 38422352 DOI: 10.1093/bfgp/elae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Massive gene expression analyses are widely used to find differentially expressed genes under specific conditions. The results of these experiments are often available in public databases that are undergoing a growth similar to that of molecular sequence databases in the past. This now allows novel secondary computational tools to emerge that use such information to gain new knowledge. If several genes have a similar expression profile across heterogeneous transcriptomics experiments, they could be functionally related. These associations are usually useful for the annotation of uncharacterized genes. In addition, the search for genes with opposite expression profiles is useful for finding negative regulators and proposing inhibitory compounds in drug repurposing projects. Here we present a new web application, Automatic and Serial Analysis of CO-expression (ASACO), which has the potential to discover positive and negative correlator genes to a given query gene, based on thousands of public transcriptomics experiments. In addition, examples of use are presented, comparing with previous contrasted knowledge. The results obtained propose ASACO as a useful tool to improve knowledge about genes associated with human diseases and noncoding genes. ASACO is available at http://www.bioinfocabd.upo.es/asaco/.
Collapse
Affiliation(s)
- Cristina Moral-Turón
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA). Faculty of Experimental Sciences (Genetics Dept.), University Pablo de Olavide, 41013, Seville, Spain
| | | | | | - Alejandro Rubio
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA). Faculty of Experimental Sciences (Genetics Dept.), University Pablo de Olavide, 41013, Seville, Spain
| | - Alberto G Navarro
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA). Faculty of Experimental Sciences (Genetics Dept.), University Pablo de Olavide, 41013, Seville, Spain
| | - Ana M Brokate-Llanos
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA). Faculty of Experimental Sciences (Genetics Dept.), University Pablo de Olavide, 41013, Seville, Spain
| | - Andrés Garzón
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA). Faculty of Experimental Sciences (Genetics Dept.), University Pablo de Olavide, 41013, Seville, Spain
| | - Manuel J Muñoz
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA). Faculty of Experimental Sciences (Genetics Dept.), University Pablo de Olavide, 41013, Seville, Spain
| | - Antonio J Pérez-Pulido
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA). Faculty of Experimental Sciences (Genetics Dept.), University Pablo de Olavide, 41013, Seville, Spain
| |
Collapse
|
5
|
Tiwari M, Srivastava P, Abbas S, Jegatheesan J, Ranjan A, Sharma S, Maurya VP, Saxena AK, Sharma LK. Emerging Role of Autophagy in Governing Cellular Dormancy, Metabolic Functions, and Therapeutic Responses of Cancer Stem Cells. Cells 2024; 13:447. [PMID: 38474411 PMCID: PMC10930960 DOI: 10.3390/cells13050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Tumors are composed of heterogeneous populations of dysregulated cells that grow in specialized niches that support their growth and maintain their properties. Tumor heterogeneity and metastasis are among the major hindrances that exist while treating cancer patients, leading to poor clinical outcomes. Although the factors that determine tumor complexity remain largely unknown, several genotypic and phenotypic changes, including DNA mutations and metabolic reprograming provide cancer cells with a survival advantage over host cells and resistance to therapeutics. Furthermore, the presence of a specific population of cells within the tumor mass, commonly known as cancer stem cells (CSCs), is thought to initiate tumor formation, maintenance, resistance, and recurrence. Therefore, these CSCs have been investigated in detail recently as potential targets to treat cancer and prevent recurrence. Understanding the molecular mechanisms involved in CSC proliferation, self-renewal, and dormancy may provide important clues for developing effective therapeutic strategies. Autophagy, a catabolic process, has long been recognized to regulate various physiological and pathological processes. In addition to regulating cancer cells, recent studies have identified a critical role for autophagy in regulating CSC functions. Autophagy is activated under various adverse conditions and promotes cellular maintenance, survival, and even cell death. Thus, it is intriguing to address whether autophagy promotes or inhibits CSC functions and whether autophagy modulation can be used to regulate CSC functions, either alone or in combination. This review describes the roles of autophagy in the regulation of metabolic functions, proliferation and quiescence of CSCs, and its role during therapeutic stress. The review further highlights the autophagy-associated pathways that could be used to regulate CSCs. Overall, the present review will help to rationalize various translational approaches that involve autophagy-mediated modulation of CSCs in controlling cancer progression, metastasis, and recurrence.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Pransu Srivastava
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| | - Sabiya Abbas
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| | - Janani Jegatheesan
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Ashish Ranjan
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Ved Prakash Maurya
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ajit Kumar Saxena
- Department of Pathology/Lab Medicine, All India Institute of Medical Science, Patna 801507, India
| | - Lokendra Kumar Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| |
Collapse
|
6
|
Pant T, Uche N, Juric M, Bosnjak ZJ. Clinical Relevance of lncRNA and Mitochondrial Targeted Antioxidants as Therapeutic Options in Regulating Oxidative Stress and Mitochondrial Function in Vascular Complications of Diabetes. Antioxidants (Basel) 2023; 12:antiox12040898. [PMID: 37107272 PMCID: PMC10135521 DOI: 10.3390/antiox12040898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic imbalances and persistent hyperglycemia are widely recognized as driving forces for augmented cytosolic and mitochondrial reactive oxygen species (ROS) in diabetes mellitus (DM), fostering the development of vascular complications such as diabetic nephropathy, diabetic cardiomyopathy, diabetic neuropathy, and diabetic retinopathy. Therefore, specific therapeutic approaches capable of modulating oxidative milieu may provide a preventative and/or therapeutic benefit against the development of cardiovascular complications in diabetes patients. Recent studies have demonstrated epigenetic alterations in circulating and tissue-specific long non-coding RNA (lncRNA) signatures in vascular complications of DM regulating mitochondrial function under oxidative stress. Intriguingly, over the past decade mitochondria-targeted antioxidants (MTAs) have emerged as a promising therapeutic option for managing oxidative stress-induced diseases. Here, we review the present status of lncRNA as a diagnostic biomarker and potential regulator of oxidative stress in vascular complications of DM. We also discuss the recent advances in using MTAs in different animal models and clinical trials. We summarize the prospects and challenges for the use of MTAs in treating vascular diseases and their application in translation medicine, which may be beneficial in MTA drug design development, and their application in translational medicine.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Nnamdi Uche
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Liu C, Ma K, Zhang Y, He X, Song L, Chi M, Han Z, Li G, Zhang Q, Liu C. Kidney diseases and long non-coding RNAs in the limelight. Front Physiol 2022; 13:932693. [PMID: 36299256 PMCID: PMC9589442 DOI: 10.3389/fphys.2022.932693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The most extensively and well-investigated sequences in the human genome are protein-coding genes, while large numbers of non-coding sequences exist in the human body and are even more diverse with more potential roles than coding sequences. With the unveiling of non-coding RNA research, long-stranded non-coding RNAs (lncRNAs), a class of transcripts >200 nucleotides in length primarily expressed in the nucleus and rarely in the cytoplasm, have drawn our attention. LncRNAs are involved in various levels of gene regulatory processes, including but not limited to promoter activity, epigenetics, translation and transcription efficiency, and intracellular transport. They are also dysregulated in various pathophysiological processes, especially in diseases and cancers involving genomic imprinting. In recent years, numerous studies have linked lncRNAs to the pathophysiology of various kidney diseases. This review summarizes the molecular mechanisms involved in lncRNAs, their impact on kidney diseases, and associated complications, as well as the value of lncRNAs as emerging biomarkers for the prevention and prognosis of kidney diseases, suggesting their potential as new therapeutic tools.
Collapse
Affiliation(s)
- Chenxin Liu
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yunchao Zhang
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Linjiang Song
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhongyu Han
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Qinxiu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| |
Collapse
|
8
|
Sobhani N, Chahwan R, Roudi R, Morris R, Volinia S, Chai D, D’Angelo A, Generali D. Predictive and Prognostic Value of Non-Coding RNA in Breast Cancer. Cancers (Basel) 2022; 14:2952. [PMID: 35740618 PMCID: PMC9221286 DOI: 10.3390/cancers14122952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/21/2022] Open
Abstract
For decades since the central dogma, cancer biology research has been focusing on the involvement of genes encoding proteins. It has been not until more recent times that a new molecular class has been discovered, named non-coding RNA (ncRNA), which has been shown to play crucial roles in shaping the activity of cells. An extraordinary number of studies has shown that ncRNAs represent an extensive and prevalent group of RNAs, including both oncogenic or tumor suppressive molecules. Henceforth, various clinical trials involving ncRNAs as extraordinary biomarkers or therapies have started to emerge. In this review, we will focus on the prognostic and diagnostic role of ncRNAs for breast cancer.
Collapse
Affiliation(s)
- Navid Sobhani
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA 94305, USA;
| | - Rachel Morris
- Thunder Biotech, 395 Cougar Blvd, Provo, UT 84604, USA;
| | - Stefano Volinia
- Department of Morphology, Embryology and Medical Oncology, Università Degli Studi di Ferrara, 44100 Ferrara, Italy;
| | - Dafei Chai
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Alberto D’Angelo
- Department of Biology & Biochemistry, University of Bath, Bath BA27AY, UK;
| | - Daniele Generali
- Department of Medical Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
9
|
Yang L, Wang B, Ma L, Fu P. An Update of Long-Noncoding RNAs in Acute Kidney Injury. Front Physiol 2022; 13:849403. [PMID: 35350698 PMCID: PMC8957988 DOI: 10.3389/fphys.2022.849403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a global public health concern with high morbidity, mortality, and medical costs. Despite advances in medicine, effective therapeutic regimens for AKI remain limited. Long non-coding RNAs (lncRNAs) are a subtype of non-coding RNAs, which longer than 200 nucleotides and perform extremely diverse functions in biological processes. Recently, lncRNAs have emerged as promising biomarkers and key mediators to AKI. Meanwhile, existing research reveals that the aberrant expression of lncRNAs has been linked to major pathological processes in AKI, including the inflammatory response, cell proliferation, and apoptosis, via forming the lncRNA/microRNA/target gene regulatory axis. Following a comprehensive and systematic search of the available literature, 87 relevant papers spanning the years 2005 to 2021 were identified. This review aims to provide and update an overview of lncRNAs in AKI, and further shed light on their potential utility as AKI biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lina Yang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Wang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhuo Z, Lin H, Liang J, Ma P, Li J, Huang L, Chen L, Yang H, Bai Y, Sha W. Mitophagy-Related Gene Signature for Prediction Prognosis, Immune Scenery, Mutation, and Chemotherapy Response in Pancreatic Cancer. Front Cell Dev Biol 2022; 9:802528. [PMID: 35198564 PMCID: PMC8860183 DOI: 10.3389/fcell.2021.802528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Mitophagy is a conserved cellular process that plays a vital role in maintaining cellular homeostasis by selectively removing dysfunctional mitochondria. Notwithstanding that growing evidence suggests that mitophagy is implicated in pancreatic tumorigenesis, the effect of mitophagy-related genes on pancreatic cancer (PC) prognosis and therapeutic response remains largely unknown. In this study, we sought to construct a mitophagy-related gene signature and assessed its ability to predict the survival, immune activity, mutation status, and chemotherapy response of PC patients. During the screening process, we identified three mitophagy-related genes (PRKN, SRC, VDAC1) from The Cancer Genome Atlas (TCGA) cohort and a 3-gene signature was established. The prognostic model was validated using an International Cancer Genome Consortium (ICGC) cohort and two Gene Expression Omnibus (GEO) cohorts. According to the median risk score, PC patients were divided into high and low-risk groups, and the high-risk group correlated with worse survival in the four cohorts. The risk score was then identified as an independent prognostic predictor, and a predictive nomogram was constructed to guide clinical decision-making. Remarkably, enhanced immunosuppressive levels and higher mutation rates were observed in patients from the high-risk group, which may account for their poor survival. Furthermore, we found that high-risk patients were more sensitive to paclitaxel and erlotinib. In conclusion, a mitophagy-related gene signature is a novel prognostic model that can be used as a predictive indicator and allows prognostic stratification of PC patients.
Collapse
Affiliation(s)
- Zewei Zhuo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hanying Lin
- Department of Endocrinology, The First People's Hospital of Zhaoqing, Zhaoqing, China
| | - Jun Liang
- Department of Geriatric Intensive Care Unit, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Pengyue Ma
- Department of Nephrology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lin Huang
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lishan Chen
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weihong Sha
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|