1
|
Al-Hawary SIS, Rodrigues P, Bangali H, Hassan ZF, Elawady A. The role of long noncoding RNA DGCR5 in cancers: Focus on molecular targets. Cell Biochem Funct 2024; 42:e3949. [PMID: 38379219 DOI: 10.1002/cbf.3949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Long noncoding RNAs (lncRNAs) are major components of cellular transcripts that are emerging as important players in various biological pathways. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis, and therapy. Studies have shown that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) with high specificity and accuracy has the potential to become biomarkers in cancers. LncRNA DGCR5 can be noninvasively extracted from body fluids, tissues, and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Now, the underlying mechanisms of lncRNAs such as DGCR5 were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. The DGCR5 lacks an appropriate animal model, which is necessary to gain greater knowledge of their functions. While some studies on the uses of DGCR5 have been carried out, the small sample size makes them unreliable. In this review, we presented a compilation of recent publications addressing the potential of lncRNA DGCR5 that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Zhang Y, Shang X, Yu M, Bi Z, Wang K, Zhang Q, Xie L, Song X, Song X. A three-snoRNA signature: SNORD15A, SNORD35B and SNORD60 as novel biomarker for renal cell carcinoma. Cancer Cell Int 2023; 23:136. [PMID: 37443032 DOI: 10.1186/s12935-023-02978-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Accumulating evidence has confirmed the role of snoRNAs in a variety of cancer, but rare in renal cell carcinoma (RCC). This study aims to clarify the role of snoRNAs in RCC tumorigenesis and their potential as novel tumor biomarkers. MATERIALS AND METHODS The snoRNA expression matrix was obtained from the public TCGA and SNORic databases. SNORD15A, SNORD35B and SNORD60 were selected and validated by qPCR, then analyzed combined with related clinical factors using T-test and ROC curve. RESULTS All three snoRNAs: SNORD15A, SNORD35B and SNORD60 were significantly upregulated in cancer tissues compared to adjacent tissues from TCGA or FFPE detection. These three snoRNAs were also increased in urinary sediment (US) of RCC as well as the early-stage RCC patients compared with the healthy controls. In addition, RNase stability experiments confirmed their stable existence in US. Meanwhile, the ROC curve shows that SNORD15A, SNORD35B and SNORD60 could effectively distinguish RCC (AUC = 0.7421) and early-stage RCC (AUC = 0.7465) from healthy individuals. CONCLUSION SNORD15A, SNORD35B and SNORD60 were upregulated in tissues and US of RCC, serving as novel potential biomarkers for RCC diagnosis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, 250117, Shandong Province, PR China
- Shanghai Pudong New Area Center for Disease Control and Prevention, 3039 Zhangyang Road, Shanghai, China
| | - Xiaoling Shang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, 250117, Shandong Province, PR China
| | - Miao Yu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, 250117, Shandong Province, PR China
- Department of Clinical Laboratory, Cheeloo College of Medicine, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, PR China
| | - Zhao Bi
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, 250117, Shandong Province, PR China
| | - Kangyu Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, 250117, Shandong Province, PR China
| | - Qianru Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, 250117, Shandong Province, PR China
| | - Li Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xianrang Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, 250117, Shandong Province, PR China.
| |
Collapse
|
3
|
Nie W, Zhang S, Gao X. Associations between KCNQ1OT1 genetic variation rs10766212 and susceptibility to colorectal cancer and clinical stage in a Chinese Han population. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:354-358. [PMID: 37349861 DOI: 10.1002/em.22559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/08/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
KCNQ1OT1 has been linked to the development and progression of colorectal cancer (CRC). As a result, functional polymorphisms in the KCNQ1OT1 gene may have a role in CRC formation and progression. The goal of this study was to see if the rs10766212 polymorphism on the KCNQ1OT1 gene was linked to CRC susceptibility and clinical stage in a Chinese Han population. The case-control research comprised a total of 576 CRC patients and 606 healthy controls. The genotype of the rs10766212 polymorphic locus was determined using the Sanger sequencing technique. We found that the KCNQ1OT1 rs10766212 polymorphism was not related to CRC susceptibility; however, it was connected with the clinical stage of CRC. Patients with CRC who had the rs10766212 T allele had a lower risk of stage III/IV tumors than those who had the rs10766212 C allele. Furthermore, CRC tissues with the rs10766212 CC genotype showed a significant negative connection between KCNQ1OT1 and hsa-miR-622 expression. The luciferase assay showed that the rs10766212 C allele might contribute to the adsorption of KCNQ1OT1 on hsa-miR-622. In conclusion, the rs10766212 polymorphism altering hsa-miR-622 binding is linked to the clinical stage of CRC and may serve as a biomarker for predicting CRC progression in the Chinese Han population. However, better-designed studies are still needed to confirm the current findings.
Collapse
Affiliation(s)
- Wanjia Nie
- School of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu, China
| | - Shulong Zhang
- Department of General Surgery, Xuhui District Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Xueren Gao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu, China
| |
Collapse
|
4
|
Zhang H, Li X, Jia M, Ji J, Wu Z, Chen X, Yu D, Zheng Y, Zhao Y. Roles of H19/miR-29a-3p/COL1A1 axis in COE-induced lung cancer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120194. [PMID: 36150622 DOI: 10.1016/j.envpol.2022.120194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Occupational lung cancer caused by coke oven emissions (COE) has attracted increasing attention, but the mechanism is not clear. Many evidences show ceRNA (competing endogenous RNA) networks play important regulatory roles in cancers. In this study, we aimed to construct and verify the ceRNA regulatory network in the occurrence of COE-induced lung squamous cell carcinoma (LUSC). We performed RNA sequencing with lung bronchial epithelial cell (16HBE) and COE induced malignant transformed cell (Rf). Furthermore, we analyzed RNA sequencing data of LUSC and adjacent tissues in the cancer genome atlas (TCGA) database. Combined our data and TCGA data to determine the differentially expressed lncRNAs, miRNAs, mRNAs. lncBASE, miRDB and miRTarBase were used to predict the binding relationship between lncRNA and miRNA, miRNA and mRNA. Based on these, we construct the ceRNA network. FREMSA, dual-luciferase reporter assay, quantitative real-time PCR (qRT-PCR), western-blot were used to verify the regulatory axis. CCK8 assay, phalloidin staining, p53 detection were used to explore the roles of this axis in the COE induced malignant transformation. Results showed 7 lncRNAs, 7 miRNAs and 146 mRNAs were identified. Among these, we constructed a ceRNA network including 1 lncRNA, 2 miRNAs and 9 mRNAs. Further verification confirmed the trend of lncRNA H19, miR-29a-3p and COL1A1 were consistent with sequencing results. H19 and COL1A1 were significantly higher in Rf than in 16HBE and miR-29a-3p was reverse. Regulatory investigation revealed H19 increased COL1A1 expression by sponging miR-29a-3p. Knockdown of H19, COL1A1 or overexpression of miR-29a-3p in Rf cells could inhibit cell proliferation, increased cell adhesion and p53 level. However, knockdown of H19 while suppressing the miR-29a-3p partially rescue the malignant phenotype of Rf caused by H19. In conclusion, all these indicated H19 functioned as a ceRNA to increase COL1A1 by sponging miR-29a-3p and promoted COE-induced cell malignant transformation.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xinmei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Mengmeng Jia
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zhaoxu Wu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
6
|
Liu Y, Liu H, Sheng B, Pan S, Wang ZW, Zhu X. The functions of lncRNAs in the HPV-negative cervical cancer compared with HPV-positive cervical cancer. Apoptosis 2022; 27:685-696. [PMID: 35980559 DOI: 10.1007/s10495-022-01761-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Cervical cancer is one of the most common female malignancies. Human papillomaviruses (HPV) are the main causative agents of virtually all cervical carcinomas. Nevertheless, emerging evidence has demonstrated that a small proportion of cervical cancer patients are HPV negative. Long noncoding RNAs (lncRNAs) have been identified to play a crucial role in cervical cancer development. Here, this review describes the incidence and development of HPV-negative cervical cancer. Moreover, HPV-negative cervical cancers are more likely diagnosed at non-squamous type, older ages, more advanced stage and metastases, and associated with poorer prognosis as compared to HPV-positive cervical cancer. Furthermore, the significant role and functions of lncRNAs underlying HPV-negative cervical cancer is clarified.
Collapse
Affiliation(s)
- Yi Liu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hejing Liu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Sheng
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuya Pan
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi-Wei Wang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xueqiong Zhu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
7
|
Chang L, Yang P, Zhang C, Zhu J, Zhang Y, Wang Y, Ding J, Wang K. Long intergenic non-protein-coding RNA 467 promotes tumor progression and angiogenesis via the microRNA-128-3p/vascular endothelial growth factor C axis in colorectal cancer. Bioengineered 2022; 13:12392-12408. [PMID: 35587748 PMCID: PMC9275949 DOI: 10.1080/21655979.2022.2074666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are important regulators and biomarkers of tumorigenesis and tumor metastasis. Long intergenic non-protein-coding RNA 467 (LINC00467) is associated with various cancers. However, the role and mechanism of LINC00467 in colorectal cancer (CRC) promotion are poorly understood. This study aimed to present new details of LINC00467 in the progression of CRC. Reverse transcription–polymerase chain reaction demonstrated that the expression level of LINC00467 in CRC tissues and cell lines was significantly upregulated, which was closely related to the clinical features of CRC. Cell and animal studies showed that the downregulation of LINC00467 expression in CRC cells significantly inhibited cell proliferation, metastasis, and angiogenesis. Moreover, the overexpression of LINC00467 accelerated CRC promotion. Bioinformatics analysis and luciferase reporter assay confirmed that LINC00467 binds to miR-128-3p. Rescue experiments manifested that decreased miR-128-3p level reversed CRC cell inhibition by silencing LINC00467. Furthermore, vascular endothelial growth factor C (VEGFC) was identified as a target of miR-128-3p that could reverse the inhibition of cell growth that is mediated by miR-128-3p. Altogether, our results showed that LINC00467 contributes to CRC progression and angiogenesis via the miR-128-3p/VEGFC axis. Our findings expand the understanding of the mechanisms underlying CRC and suggest potential targets for clinical strategies against CRC.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peipei Yang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yirao Zhang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Ke N, Chen L, Liu Q, Xiong H, Chen X, Zhou X. Downregulation of miR-211-5p Promotes Carboplatin Resistance in Human Retinoblastoma Y79 Cells by Affecting the GDNF-LIF Interaction. Front Oncol 2022; 12:848733. [PMID: 35311096 PMCID: PMC8925320 DOI: 10.3389/fonc.2022.848733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the role of the miR-211-5p-GDNF signaling pathway in carboplatin resistance of retinoblastoma Y79 cells and what factors it may be affected by. Methods A carboplatin-resistant retinoblastoma cell line (Y79R) was established in vitro. RNA-seq and microRNA-seq were constructed between Y79 and Y79R cells. RNA interference, RT-PCR, Western blot (WB), and flow cytometry were used to verify the expression of genes and proteins between the two cell lines. The TargetScan database was used to predict the microRNAs that regulate the target genes. STING sites and Co-Immunoprecipitation (COIP) were used to study protein–protein interactions. Results GDNF was speculated to be the top changed gene in the drug resistance in Y79R cell lines. Moreover, the speculation was verified by subsequent RT-PCR and WB results. When the expression of GDNF was knocked down, the IC50 of the Y79R cell line significantly reduced. GDNF was found to be the target gene of miR-211-5p. Downregulation of miR-211-5p promotes carboplatin resistance in human retinoblastoma Y79 cells. MiR-211-5p can regulate the expression of GDNF. Our further research also found that GDNF can bind to LIF which is also a secreted protein. Conclusion Our results suggest that downregulation of miR-211-5p promotes carboplatin resistance in human retinoblastoma Y79 cells, and this process can be affected by GDNF–LIF interaction. These results can provide evidence for the reversal of drug resistance of RB.
Collapse
Affiliation(s)
- Ning Ke
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Chen
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Liu
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haibo Xiong
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinke Chen
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiyuan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Wei J, Gao Y, Li Z, Jia H, Han B. LncRNA SNHG6 facilitates cell proliferation, migration, invasion and EMT by upregulating UCK2 and activating the Wnt/β-catenin signaling in cervical cancer. Bioorg Chem 2021; 120:105488. [PMID: 35033815 DOI: 10.1016/j.bioorg.2021.105488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 01/21/2023]
Abstract
Cervical cancer is a most prevalent gynecological malignancy around the world. Long non-coding RNAs (lncRNAs) are recognized as crucial players in the cellular activities of diverse cancers including cervical cancer. We aimed to reveal the biological function of lncRNA small nucleolar RNA host gene 6 (SNHG6) in cervical cancer. Our findings illuminated that SNHG6 expression was elevated in cervical cancer tissues and cell lines, and highly expressed SNHG6 was associated with poor outcome in patients with cervical cancer. Moreover, knockdown of SNHG6 repressed cervical cancer development via inhibiting cell proliferation and migration and accelerating cell apoptosis. Further, SNHG6 was a sponge of miR-485-3p and uridine-cytidine kinase 2 (UCK2) was the functional target of miR-485-3p. SNHG6 increased UCK2 expression by binding with miR-485-3p in cervical cancer cells. The rescue experiments showed that SNHG6 contributed to malignant phenotypes of cervical cancer cells by the miR-485-3p/UCK2 axis. Additionally, SNHG6 activated the Wnt/β-catenin pathway to enhance the proliferative and migratory ability of cervical cancer cells. Overall, this work revealed that SNHG6 promoted malignant behaviors of cervical cancer cells by binding with miR-485-3p to regulate UCK2 and activating the Wnt/β-catenin pathway, which may offer a beneficial direction to treat cervical cancer.
Collapse
Affiliation(s)
- Jing Wei
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - YuHua Gao
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - Zhuo Li
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - HaiQing Jia
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - Bing Han
- Department of The Sixth General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|