1
|
Zhou Y, Liu D, Li H. FGL1 Promotes Tumor Immune Escape in Stomach Adenocarcinoma via the Notch Signaling Pathway. Mol Biotechnol 2024; 66:3203-3212. [PMID: 37902887 DOI: 10.1007/s12033-023-00928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Immune escape is the major reason for immunotherapy failure in stomach adenocarcinoma (STAD). We tried to reveal the underlying mechanism of FGL1 influencing STAD in this study. Bioinformatics analyses were conducted to analyze the expression of FGL1, the signaling pathways affected by FGL1, and the relation between FGL1 and immune cell infiltration. Quantitative real-time PCR (qRT-PCR), cell counting kit-8 assay, colony formation assay, flow cytometry and Transwell assay were adopted to analyze FGL1 expression, cell viability, cell proliferation, cell apoptosis, and cell invasion, respectively. Enzyme-linked immunosorbent assay, lactate dehydrogenase method, qRT-PCR and Western blot were adopted to reveal proinflammatory cytokine expression, cytotoxicity and mRNA and protein expression of the Notch signaling-related genes, respectively, after co-culture of STAD cells and CD8+T cells. Nude mice experiment was conducted to validate the results obtained above. FGL1 expressed highly in STAD and could activate the Notch signaling pathway, and it was negatively correlated with CD8+T cell infiltration. Cell experiments confirmed that high expression of FGL1 facilitated proliferation and hindered apoptosis of STAD cells. Knockdown of FGL1 could facilitate expression of pro-inflammatory factors and the cytotoxicity of CD8+T cells in co-culture system of STAD and CD8+ T cells. Knockdown of FGL1 could suppress the expression of the Notch signaling pathway-related genes, and the addition of Notch inhibitor proved that FGL1 promoted immune escape via the Notch signaling pathway. This study investigated the influence of FGL1 on STAD immune escape and demonstrated that FGL1 inhibited CD8+ T cell activation by activating the Notch signaling pathway and thus promoted tumor immune escape in STAD, providing a new potential diagnostic marker and therapeutic target for the immunotherapy of STAD patients.
Collapse
Affiliation(s)
- Yani Zhou
- School of Health Management, Shangluo University, Shangluo, 726000, China
| | - Dan Liu
- Department of Rheumatology, First Affiliated Hospital of Xi'an Medical College, Xi'an, 710077, China
| | - Huirong Li
- Department of Mathematics and Computer Application, Shangluo University, No. 10, Beixin Street, Shangzhou District, Shangluo, 726000, Shaanxi Province, China.
| |
Collapse
|
2
|
Pan D, Li Z, Lin X, Li L. Transcriptome sequencing and miRNA-mRNA network construction in exosome of macrophage M2 in stomach adenocarcinoma. World J Surg Oncol 2023; 21:193. [PMID: 37370118 DOI: 10.1186/s12957-023-03070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is the most common histological type of gastric cancer (GC). Macrophages are an essential part of the tumor microenvironment. We attempted to search for potential molecular markers associated with macrophages, which might be helpful for STAD diagnosis and treatment. METHODS Firstly, exosome in macrophages was extracted for RNA sequencing to identify differentially expressed microRNAs (miRNAs) (DEmiRNAs). Then, DEmiRNAs and differentially expressed mRNAs (DEmRNAs) were screened in the Cancer Genome Atlas (TCGA) database. The miRNAs related to macrophage M2 polarization were obtained by intersecting the DEmiRNAs obtained from the sequencing data and TCGA data. Using the Pearson correlation coefficient method, the mRNAs significantly related to macrophage M2 were screened out, followed by construction of the macrophage M2-miRNA-mRNA network. Subsequently, real-time-polymerase chain reaction (RT-PCR) and online datasets were applied to validate the expression of DEmiRNAs and DEmRNAs. RESULTS A total of 6 DEmiRNAs were identified in RNA sequencing; 59 DEmiRNAs and 1838 DEmRNAs were identified in TCGA database. Among which, a common miRNA (hsa-miR-133a-3p) associated with the M2 polarization of macrophages was identified. Fifteen common mRNAs were obtained between DEmRNAs and mRNAs targeted by DEmiRNAs. Eventually, a core macrophage M2-1 down-regulated miRNA-7 and up-regulated mRNAs network was constructed, including hsa-miR-133a-3p, SLC39A1, TTYH3, HAVCR2, TPM3, XPO1, POU2F1, and MMP14. The expression of miRNA and mRNAs was in line with the validation results of RT-PCR and online datasets. CONCLUSION In this study, the screening of biomarkers in exosome of macrophage M2 may contribute to the prognosis of STAD patients.
Collapse
Affiliation(s)
- Dun Pan
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian Province, China
- Department of Gastrointestinal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Research Institute of Abdominal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zhipeng Li
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian Province, China
- Department of Gastrointestinal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Research Institute of Abdominal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xin Lin
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian Province, China
- Department of Gastrointestinal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Research Institute of Abdominal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Liangqing Li
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian Province, China.
- Department of Gastrointestinal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Research Institute of Abdominal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
3
|
Hong X, Zhuang K, Xu N, Wang J, Liu Y, Tang S, Zhao J, Huang Z. An integrated analysis of prognostic mRNA signature in early- and progressive-stage gastric adenocarcinoma. Front Mol Biosci 2023; 9:1022056. [PMID: 36660425 PMCID: PMC9846543 DOI: 10.3389/fmolb.2022.1022056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
The pathogenesis and vital factors of early and progressive stages of stomach adenocarcinoma (STAD) have not been fully elucidated. In order to discover novel and potential targets to guide effective treatment strategies, a comprehensive bioinformatics study was performed, and the representative results were then validated by quantitative polymerase chain reaction (qPCR) and immunohistochemical (IMC) staining in clinical samples. A total of 4,627, 4,715, and 3,465 differentially expressed genes (DEGs) from overall-, early-, and progressive-stage STAD were identified, respectively. Prognostic models of 5-year OS were established for overall-, early-, and progressive-stage STAD, and ROC curves demonstrated AUC values for each model were 0.73, 0.87, and 0.92, respectively. Function analysis revealed that mRNAs of early-stage STAD were enriched in chemical stimulus-related pathways, whereas remarkable enrichment of mRNAs in progressive-stage STAD mainly lay in immune-related pathways. Both qPCR and IHC data confirmed the up-regulation of IGFBP1 in the early-stage and CHAF1A in progressive-stage STAD compared with their matched normal tissues, indicating that these two representative targets could be used to predict the prognostic status of the patients in these two distinct STAD stages, respectively. In addition, seven mRNAs (F2, GRID2, TF, APOB, KIF18B, INCENP, and GCG) could be potential novel biomarkers for STAD at different stages from this study. These results contributed to identifying STAD patients at high-risk, thus guiding targeted treatment with efficacy in these patients.
Collapse
Affiliation(s)
- Xiaoling Hong
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Key Laboratory of Big Data Mining and Precision Drug Design, Guangdong Medical University, Dongguan, China,Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, China,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan, China,The Second School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Kai Zhuang
- Key Laboratory of Big Data Mining and Precision Drug Design, Guangdong Medical University, Dongguan, China,Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, China,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan, China,School of Public Health, Guangdong Medical University, Dongguan, China
| | - Na Xu
- Key Laboratory of Big Data Mining and Precision Drug Design, Guangdong Medical University, Dongguan, China,Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, China,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan, China
| | - Jiang Wang
- School of Biomedical Engineering, Guangdong Medical University, Zhanjiang, China
| | - Yong Liu
- Key Laboratory of Big Data Mining and Precision Drug Design, Guangdong Medical University, Dongguan, China,Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, China,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan, China
| | - Siqi Tang
- Key Laboratory of Big Data Mining and Precision Drug Design, Guangdong Medical University, Dongguan, China,Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, China,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan, China,The Second School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Junzhang Zhao
- Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, National Key Clinical Discipline, Guangzhou, China,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China,*Correspondence: Junzhang Zhao, ; Zunnan Huang,
| | - Zunnan Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Key Laboratory of Big Data Mining and Precision Drug Design, Guangdong Medical University, Dongguan, China,Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, China,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan, China,Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, China,*Correspondence: Junzhang Zhao, ; Zunnan Huang,
| |
Collapse
|
4
|
Han X, Ye J, Huang R, Li Y, Liu J, Meng T, Song D. Pan-cancer analysis reveals interleukin-17 family members as biomarkers in the prediction for immune checkpoint inhibitor curative effect. Front Immunol 2022; 13:900273. [PMID: 36159856 PMCID: PMC9493092 DOI: 10.3389/fimmu.2022.900273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background The interleukin-17 (IL-17) family contains six homologous genes, IL-17A to IL-17F. Growing evidence indicates that dysregulated IL-17 family members act as major pathogenic factors in the early and late stages of cancer development and progression. However, the prevalence and predictive value of IL-17 for immune checkpoint inhibitor (ICI) therapeutic effectiveness in multiple tumor types remain largely unknown, and the associations between its expression levels and immunotherapy-associated signatures also need to be explored. Methods The pan-cancer dataset in The Cancer Genome Atlas (TCGA) was downloaded from UCSC Xena (http://xena.ucsc.edu/). The immunotherapeutic cohorts included IMvigor210, which were obtained from the Gene Expression Omnibus database and included in a previously published study. Other datasets, namely, the GEO dataset and PRECOG, GEO, and METABRIC databases, were also included. In 33 TCGA tumor types, a pan-cancer analysis was carried out including their expression map, clinical risk assessment, and immune subtype analysis, along with their association with the stemness indices, tumor microenvironment (TME) in pan-cancer, immune infiltration analysis, ICI-related immune indicators, and drug sensitivity. RT-PCR was also carried out to verify the gene expression levels among MCF-10A and MCF-7 cell lines. Results The expression of the IL-17 family is different between tumor and normal tissue in most cancers, and consistency has been observed between gene activity and gene expression. RT-PCR results show that the expression differences in the IL-17 family of human cell (MCF-10A and MCF-7) are consistent with the bioinformatics differential expression analysis. Moreover, the expression of the IL-17 family can be a sign of patients’ survival prognosis in some tumors and varies in different immune subtypes. Moreover, the expression of the IL-17 family presents a robust correlation with immune cell infiltration, ICI-related immune indicators, and drug sensitivity. High expression of the IL-17 family is significantly related to immune-relevant pathways, and the low expression of IL-17B means a better immunotherapeutic response in BLCA. Conclusion Collectively, IL-17 family members may act as biomarkers in predicting the prognosis of the tumor and the therapeutic effects of ICIs, which provides new guidance for cancer treatment.
Collapse
Affiliation(s)
- Xiaying Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianxin Ye
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yongai Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianpeng Liu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Dianwen Song, ; Tong Meng, ; Jianpeng Liu,
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Dianwen Song, ; Tong Meng, ; Jianpeng Liu,
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Dianwen Song, ; Tong Meng, ; Jianpeng Liu,
| |
Collapse
|
5
|
Gao J, Huo S, Zhang Y, Zhao Z, Pan H, Liu X. Construction of ovarian metastasis-related immune signature predicting prognosis of gastric cancer patients. Cancer Med 2022; 12:913-929. [PMID: 35621244 PMCID: PMC9844635 DOI: 10.1002/cam4.4857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Ovarian metastasis (OM) results in poor survival of gastric cancer (GC) patients. While immunotherapy has emerged as a promising approach for late-stage GC, validated immune-related prognostic signatures still remain in need. In this study, we constructed an ovarian metastasis- and immune-related prognostic signature (OMIRPS), characterized the molecular and immune features of OMIRPS-categorized subgroups and predicted their potential response to immunotherapy. METHODS Three individual cohorts were used to construct and evaluate OMIRPS: RNA-seq of matched primary GC and OM from Fudan University Shanghai Cancer Center (FUSCC) (discovery cohort, n = 4), The Cancer Genome Atlas (TCGA) (training cohort, n = 544) and GSE84437 (validation cohort, n = 433). Differentially expressed genes (DEGs) identified between primary GC and OM and immune-related genes (IRGs) from the ImmPort and InnateDB databases were used to identify immune-related prognostic hub genes, which were further used to construct OMIRPS by using LASSO regression analysis. Prognosis, molecular characteristics, immune features, and differential immunotherapy efficacy between different OMIRPS subgroups were analyzed. RESULTS Functional analyses of DEGs revealed the significance of immune-related signatures and pathways in the OM. Immune-related prognostic hub genes including TNFRSF18, CARD11, BCL11B, NRP1, BNIP3L, and ATF3 were utilized to construct OMIRPS, which was identified as an independent prognostic factor. Comprehensive analyses unveiled the distinctive molecular and immune characteristics of OMIRPS-high and -low subgroup in regard to enriched pathways, mutation rate, tumor mutation burden, microsatellite instability status, infiltrated immune cell, immune exclusion score, and the prediction of immunotherapy efficacy. Additionally, OMIRPS was associated with Immune Subtypes with borderline significance. CONCLUSIONS RNA-seq of paired primary and ovarian metastatic tumors unveiled the significance of immune-related pathways and tumor immune microenvironment in OM. OMIRPS served as a promising biomarker to predict the prognosis of GC patients and distinguish the molecular features, immune characteristics, and efficacy of immunotherapy between different subgroups.
Collapse
Affiliation(s)
- Jianpeng Gao
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shiying Huo
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yu Zhang
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Zhenxiong Zhao
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Hongda Pan
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xiaowen Liu
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|