1
|
Patrașcu AV, Țarcă E, Lozneanu L, Ungureanu C, Moroșan E, Parteni DE, Jehac A, Bernic J, Cojocaru E. The Role of Epithelial-Mesenchymal Transition in Osteosarcoma Progression: From Biology to Therapy. Diagnostics (Basel) 2025; 15:644. [PMID: 40075892 PMCID: PMC11898898 DOI: 10.3390/diagnostics15050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor, predominantly affecting children, adolescents, and young adults. Epithelial-mesenchymal transition (EMT), a process in which epithelial cells lose their cell-cell adhesion and gain migratory and invasive properties, has been extensively studied in various carcinomas. However, its role in mesenchymal tumors like osteosarcoma remains less explored. EMT is increasingly recognized as a key factor in the progression of osteosarcoma, contributing to tumor invasion, metastasis, and resistance to chemotherapy. This narrative review aims to provide a comprehensive overview of the molecular mechanisms driving EMT in osteosarcoma, highlighting the involvement of signaling pathways such as TGF-β, transcription factors like Snail, Twist, and Zeb, and the role of microRNAs in modulating EMT. Furthermore, we discuss how EMT correlates with poor prognosis and therapy resistance in osteosarcoma patients, emphasizing the potential of targeting EMT for therapeutic intervention. Recent advancements in understanding EMT in osteosarcoma have opened new avenues for treatment, including EMT inhibitors and combination therapies aimed at overcoming drug resistance. By integrating biological insights with clinical implications, this review underscores the importance of EMT as a critical process in osteosarcoma progression and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Andrei-Valentin Patrașcu
- Department of Morphofunctional Sciences I—Pathology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.-V.P.); (C.U.); (E.M.); (D.-E.P.); (E.C.)
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
| | - Ludmila Lozneanu
- Department of Morphofunctional Sciences I—Histology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Carmen Ungureanu
- Department of Morphofunctional Sciences I—Pathology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.-V.P.); (C.U.); (E.M.); (D.-E.P.); (E.C.)
| | - Eugenia Moroșan
- Department of Morphofunctional Sciences I—Pathology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.-V.P.); (C.U.); (E.M.); (D.-E.P.); (E.C.)
| | - Diana-Elena Parteni
- Department of Morphofunctional Sciences I—Pathology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.-V.P.); (C.U.); (E.M.); (D.-E.P.); (E.C.)
| | - Alina Jehac
- Second Dental Medicine Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Jana Bernic
- Discipline of Pediatric Surgery, “Nicolae Testemițanu” State University of Medicine and Pharmacy, MD-2001 Chisinau, Moldova;
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.-V.P.); (C.U.); (E.M.); (D.-E.P.); (E.C.)
| |
Collapse
|
2
|
Li Z, Tian Y. Role of long noncoding RNAs in the regulation of epithelial‑mesenchymal transition in osteosarcoma (Review). Oncol Rep 2025; 53:35. [PMID: 39930817 PMCID: PMC11783035 DOI: 10.3892/or.2025.8868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/16/2024] [Indexed: 02/14/2025] Open
Abstract
Osteosarcoma (OS) is one of the most widespread malignant bone tissue tumors. However, its early diagnosis is difficult, leading to poor prognoses. Long noncoding RNA (lncRNA) can serve as a molecular marker for the early diagnosis and treatment of OS. lncRNAs regulate the epithelial‑mesenchymal transition (EMT) process to control the occurrence and progression of OS. The present review summarizes the studies on lncRNA regulation of OS via the EMT process. A search of the PubMed database yielded 93 published articles since January 2015, of which 73 focused on lncRNA regulation of OS via the EMT process. The present review has classified lncRNAs based on their relationship with tumors (promoting or inhibiting), mechanism of action and naming convention. Most lncRNAs promote OS through EMT and act via microRNA sponging. Previous studies have focused on lncRNAs with known functions, antisense lncRNAs and long intergenic noncoding RNAs. The findings indicated that lncRNAs can regulate the EMT process through various mechanisms to control OS progression. Further studies on specific lncRNAs and their underlying mechanisms will provide insights for the development of strategies for the diagnosis, prevention and treatment of OS.
Collapse
Affiliation(s)
- Zihan Li
- Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yihao Tian
- Department of Pathology, General Hospital of Northern Theater Command, Beifang Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
3
|
Nguyen LNT, Pyburn JS, Nguyen NL, Schank MB, Zhao J, Wang L, Leshaodo TO, El Gazzar M, Moorman JP, Yao ZQ. Epigenetic Regulation by lncRNA GAS5/miRNA/mRNA Network in Human Diseases. Int J Mol Sci 2025; 26:1377. [PMID: 39941145 PMCID: PMC11818527 DOI: 10.3390/ijms26031377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
The interplay between long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) is crucial in the epigenetic regulation of mRNA and protein expression, impacting the development and progression of a plethora of human diseases, such as cancer, cardiovascular disease, inflammatory-associated diseases, and viral infection. Among the many lncRNAs, growth arrest-specific 5 (GAS5) has garnered substantial attention for its evident role in the regulation of significant biological processes such as proliferation, differentiation, senescence, and apoptosis. Through miRNA-mediated signaling pathways, GAS5 modulates disease progression in a cell-type-specific manner, typically by influencing proteins involved in inflammation and cell death. While GAS5 is recognized as a tumor suppressor in cancer, recent reports highlight its broader regulatory capacity in non-cancerous diseases. Its modulation of protein expression through the GAS5/miRNA network has been shown to both mitigate and exacerbate disease, depending on the specific context. Furthermore, the therapeutic potential of GAS5 manipulation, via knockdown or overexpression, offers promising avenues for targeted interventions across human diseases. This review explores the dualistic impacts of the GAS5/miRNA network in conditions such as cancer, cardiovascular disease, viral infections, and inflammatory disorders. Through the evaluation of current evidence, we aim to provide insight into GAS5's biological functions and its implications for future research and therapeutic development.
Collapse
Affiliation(s)
- Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jaeden S. Pyburn
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Nhat Lam Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Madison B. Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tabitha O. Leshaodo
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| |
Collapse
|
4
|
Sweef O, Mahfouz R, Taşcıoğlu T, Albowaidey A, Abdelmonem M, Asfar M, Zaabout E, Corcino YL, Thomas V, Choi ES, Furuta S. Decoding LncRNA in COPD: Unveiling Prognostic and Diagnostic Power and Their Driving Role in Lung Cancer Progression. Int J Mol Sci 2024; 25:9001. [PMID: 39201688 PMCID: PMC11354875 DOI: 10.3390/ijms25169001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer represent formidable challenges in global health, characterized by intricate pathophysiological mechanisms and multifaceted disease progression. This comprehensive review integrates insights from diverse perspectives to elucidate the intricate roles of long non-coding RNAs (lncRNAs) in the pathogenesis of COPD and lung cancer, focusing on their diagnostic, prognostic, and therapeutic implications. In the context of COPD, dysregulated lncRNAs, such as NEAT1, TUG1, MALAT1, HOTAIR, and GAS5, emerge as pivotal regulators of genes involved in the disease pathogenesis and progression. Their identification, profiling, and correlation with the disease severity present promising avenues for prognostic and diagnostic applications, thereby shaping personalized disease interventions. These lncRNAs are also implicated in lung cancer, underscoring their multifaceted roles and therapeutic potential across both diseases. In the domain of lung cancer, lncRNAs play intricate modulatory roles in disease progression, offering avenues for innovative therapeutic approaches and prognostic indicators. LncRNA-mediated immune responses have been shown to drive lung cancer progression by modulating the tumor microenvironment, influencing immune cell infiltration, and altering cytokine production. Their dysregulation significantly contributes to tumor growth, metastasis, and chemo-resistance, thereby emphasizing their significance as therapeutic targets and prognostic markers. This review summarizes the transformative potential of lncRNA-based diagnostics and therapeutics for COPD and lung cancer, offering valuable insights into future research directions for clinical translation and therapeutic development.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Reda Mahfouz
- Core Laboratory, University Hospital Cleveland Medical Center, Department of Pathology, School of Medicine, Case Western Reserve University, 1100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Clinical Pathology, Faculty of Medicine, Menofia University, Shebin-Elkom 32511, Egypt
| | - Tülin Taşcıoğlu
- Department of Molecular Biology and Genetics, Demiroglu Bilim University, Esentepe Central Campus, Besiktas, 34394 Istanbul, Turkey
| | - Ali Albowaidey
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mohamed Abdelmonem
- Department of Pathology, Transfusion Medicine Service, Stanford Healthcare, Stanford, CA 94305, USA
| | - Malek Asfar
- Department of Pathology, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Elsayed Zaabout
- Department of Therapeutics & Pharmacology, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yalitza Lopez Corcino
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Venetia Thomas
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Eun-Seok Choi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
5
|
Chen L, He L, Liu B, Zhou Y, Lv L, Wang Z. Intelligent structure prediction and visualization analysis of non-coding RNA in osteosarcoma research. Front Oncol 2024; 14:1255061. [PMID: 38532928 PMCID: PMC10964489 DOI: 10.3389/fonc.2024.1255061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Background Osteosarcoma (OS) is the most common bone malignant tumor in children and adolescents. Recent research indicates that non-coding RNAs (ncRNAs) have been associated with OS occurrence and development, with significant progress made in this field. However, there is no intelligent structure prediction and literature visualization analysis in this research field. From the perspective of intelligent knowledge structure construction and bibliometrics, this study will comprehensively review the role of countries, institutions, journals, authors, literature citation relationships and subject keywords in the field of ncRNAs in OS. Based on this analysis, we will systematically analyze the characteristics of the knowledge structure of ncRNAs in OS disease research and identify the current research hotspots and trends. Methods The Web of Science Core Collection (WoSCC) database was searched for articles on ncRNAs in OS between 2001 and 2023. This bibliometric analysis was performed using VOSviewers, CiteSpace, and Pajek. Results This study involved 15,631 authors from 2,631 institutions across 57 countries/regions, with a total of 3,642 papers published in 553 academic journals. China has the highest number of published papers in this research field. The main research institutions include Nanjing Medical University (n = 129, 3.54%), Shanghai Jiao Tong University (n = 128, 3.51%), Zhengzhou University (n = 110, 3.02%), and China Medical University (n = 109, 2.99%). Oncology Letters (n =139, 3.82%), European Review for Medical Pharmacological Sciences (120, 3.31%), and Molecular Medicine Reports (n = 95, 2.61%) are the most popular journals in this field, with Oncotarget being the most co-cited journal (Co-Citation = 4,268). Wei Wang, Wei Liu, and Zhenfeng Duan published the most papers, with Wang Y being the most co-cited author. "miRNA", "lncRNA" and "circRNA" are the main focuses of ncRNAs in OS studies. Key themes include "migration and invasion", "apoptosis and proliferation", "prognosis", "biomarkers" and "chemoresistance". Since 2020, hotspots and trends in ncRNA research in OS include "tumor microenvironment", "immune" and "exosome". Conclusion This study represents the first comprehensive bibliometric analysis of the knowledge structure and development of ncRNAs in OS. These findings highlight current research hotspots and frontier directions, offering valuable insights for future studies on the role of ncRNAs in OS.
Collapse
Affiliation(s)
- Longhao Chen
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Clinical Medical College, Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Liuji He
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Baijie Liu
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yinghua Zhou
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lijiang Lv
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Clinical Medical College, Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zhiguang Wang
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
6
|
Liao X, Wei R, Zhou J, Wu K, Li J. Emerging roles of long non-coding RNAs in osteosarcoma. Front Mol Biosci 2024; 11:1327459. [PMID: 38516191 PMCID: PMC10955361 DOI: 10.3389/fmolb.2024.1327459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Osteosarcoma (OS) is a highly aggressive and lethal malignant bone tumor that primarily afflicts children, adolescents, and young adults. However, the molecular mechanisms underlying OS pathogenesis remain obscure. Mounting evidence implicates dysregulated long non-coding RNAs (lncRNAs) in tumorigenesis and progression. These lncRNAs play a pivotal role in modulating gene expression at diverse epigenetic, transcriptional, and post-transcriptional levels. Uncovering the roles of aberrant lncRNAs would provide new insights into OS pathogenesis and novel tools for its early diagnosis and treatment. In this review, we summarize the significance of lncRNAs in controlling signaling pathways implicated in OS development, including the Wnt/β-catenin, PI3K/AKT/mTOR, NF-κB, Notch, Hippo, and HIF-1α. Moreover, we discuss the multifaceted contributions of lncRNAs to drug resistance in OS, as well as their potential to serve as biomarkers and therapeutic targets. This review aims to encourage further research into lncRNA field and the development of more effective therapeutic strategies for patients with OS.
Collapse
Affiliation(s)
- Xun Liao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junxiu Zhou
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Ke Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
He Y, Huang X, Ma Y, Yang G, Cui Y, Lv X, Zhao R, Jin H, Tong Y, Zhang X, Li J, Peng M. A novel aging-associated lncRNA signature for predicting prognosis in osteosarcoma. Sci Rep 2024; 14:1386. [PMID: 38228673 PMCID: PMC10791644 DOI: 10.1038/s41598-024-51732-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent bone tumors in adolescents, and the correlation between aging and OS remains unclear. Currently, few accurate and reliable biomarkers have been determined for OS prognosis. To address this issue, we carried out a detailed bioinformatics analysis based on OS with data from the Cancer Genome Atlas data portal and Human Aging Genomic Resources database, as well as in vitro experiments. A total of 88 OS samples with gene expression profiles and corresponding clinical characteristics were obtained. Through univariate Cox regression analysis and survival analysis, 10 aging-associated survival lncRNAs (AASRs) were identified to be associated with the overall survival of OS patients. Based on the expression levels of the 10 AASRs, the OS patients were classified into two clusters (Cluster A and Cluster B). Cluster A had a worse prognosis, while Cluster B had a better prognosis. Then, 5 AASRs were ultimately included in the signature through least absolute shrinkage and selection operator-Cox regression analysis. Kaplan‒Meier survival analysis verified that the high-risk group exhibited a worse prognosis than the low-risk group. Furthermore, univariate and multivariate Cox regression analyses confirmed that the riskScore was an independent prognostic factor for OS patients. Subsequently, we discovered that the risk signature was correlated with the properties of the tumor microenvironment and immune cell infiltration. Specifically, there was a positive association between the risk model and naïve B cells, resting dendritic cells and gamma delta T cells, while it was negatively related to CD8+ T cells. Finally, in vitro experiments, we found that UNC5B-AS1 inhibited OS cells from undergoing cellular senescence and apoptosis, thereby promoting OS cells proliferation. In conclusion, we constructed and verified a 5 AASR-based signature, that exhibited excellent performance in evaluating the overall survival of OS patients. In addition, we found that UNC5B-AS1 might inhibit the senescence process, thus leading to the development and progression of OS. Our findings may provide novel insights into the treatment of OS patients.
Collapse
Affiliation(s)
- Yi He
- Department of Mini-Invasive Spinal Surgery, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Xiao Huang
- Department of Clinical Laboratory, Luohe Central Hospital, Luohe, 462300, Henan, China
| | - Yajie Ma
- Department of Medical Affair, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Guohui Yang
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuqing Cui
- General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xuefeng Lv
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Rongling Zhao
- Department of Clinical Laboratory, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Huifang Jin
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yalin Tong
- Department of Digestion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinyu Zhang
- Department of Medical Affair, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Provincial Orthopedic Institute, Henan University of Chinese Medicine, 100 Yongping Road, Zhengzhou, 450000, Henan, China.
| | - Mengle Peng
- Department of Clinical Laboratory, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China.
| |
Collapse
|
8
|
Sun H, Chen T, Li X, Zhu Y, Zhang S, He P, Peng Y, Fan Q. The relevance of the non-invasive biomarkers lncRNA GAS5/miR-21 ceRNA regulatory network in the early identification of diabetes and diabetic nephropathy. Diabetol Metab Syndr 2023; 15:197. [PMID: 37821982 PMCID: PMC10566063 DOI: 10.1186/s13098-023-01179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND To investigate the diagnostic value of serum lncRNA growth arrest-specific transcript 5 (lncRNA GAS5) and microRNA-21 (miR-21) in patients with type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN), and elucidate their roles in the pathogenesis. METHODS A microarray technology was used asses lncRNA GAS5 and miR-21 expression profiles in non-anticoagulant blood from 44 patients including T2DM without DN group (DM), T2DM with DN group (DN), and healthy controls group (N), followed by real-time PCR validation. Logistic regression and receiver operating characteristic (ROC) curves were applied to evaluate the clinical indicators among normal, T2DM, and DN patients. RESULTS The serum lncRNA GAS5 expression in T2DM and DN patients was significantly down-regulated compared with the N group, while the expression of miR-21 was significantly up-regulated (all P < 0.05). Fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) were negatively correlated with serum lncRNA GAS5, and FBG was independently correlated with serum lncRNA GAS5. Urinary microalbumin, total cholesterol (TC), creatinine (Cr), urea, and systolic blood pressure (SBP) were significantly positively correlated with serum miR-21. Glomerular filtration rate (GFR) and albuminuria (ALB) were negatively correlated with serum miR-21, and ALB was independently correlated with serum miR-21. Serum lncRNA GAS5, miR-21 and lncRNA GAS5/miR-21 showed good diagnostic efficiency as the "diagnostic signature" of T2DM and DN. CONCLUSION The lncRNA GAS5/miR-21 diagnostic signature may be a more effective non-invasive biomarker for detecting T2DM. In addition, miR-21 alone may be a more accurate serum biomarker for the early screening of DN patients.
Collapse
Affiliation(s)
- He Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tong Chen
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
- Department of Nephrology, Shenyang Seventh People's Hospital, Shenyang, China
| | - Xin Li
- Department of Nephrology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yonghong Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Shuang Zhang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Ping He
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Yali Peng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Qiuling Fan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China.
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Long Non-Coding RNAs as Novel Targets for Phytochemicals to Cease Cancer Metastasis. Molecules 2023; 28:molecules28030987. [PMID: 36770654 PMCID: PMC9921150 DOI: 10.3390/molecules28030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Metastasis is a multi-step phenomenon during cancer development leading to the propagation of cancer cells to distant organ(s). According to estimations, metastasis results in over 90% of cancer-associated death around the globe. Long non-coding RNAs (LncRNAs) are a group of regulatory RNA molecules more than 200 base pairs in length. The main regulatory activity of these molecules is the modulation of gene expression. They have been reported to affect different stages of cancer development including proliferation, apoptosis, migration, invasion, and metastasis. An increasing number of medical data reports indicate the probable function of LncRNAs in the metastatic spread of different cancers. Phytochemical compounds, as the bioactive agents of plants, show several health benefits with a variety of biological activities. Several phytochemicals have been demonstrated to target LncRNAs to defeat cancer. This review article briefly describes the metastasis steps, summarizes data on some well-established LncRNAs with a role in metastasis, and identifies the phytochemicals with an ability to suppress cancer metastasis by targeting LncRNAs.
Collapse
|
10
|
Hong-bin S, Wan-jun Y, Chen-hui D, Xiao-jie Y, Shen-song L, Peng Z. Identification of an Iron Metabolism-Related lncRNA Signature for Predicting Osteosarcoma Survival and Immune Landscape. Front Genet 2022; 13:816460. [PMID: 35360864 PMCID: PMC8961878 DOI: 10.3389/fgene.2022.816460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) act as epigenetic regulators in the process of ferroptosis and iron metabolism. This study aimed to identify an iron metabolism-related lncRNA signature to predict osteosarcoma (OS) survival and the immune landscape. Methods: RNA-sequencing data and clinical information were obtained from the TARGET dataset. Univariate Cox regression and LASSO Cox analysis were used to develop an iron metabolism-related lncRNA signature. Consensus clustering analysis was applied to identify subtype-based prognosis-related lncRNAs. CIBERSORT was used to analyze the difference in immune infiltration and the immune microenvironment in the two clusters. Results: We identified 302 iron metabolism-related lncRNAs based on 515 iron metabolism-related genes. The results of consensus clustering showed the differences in immune infiltration and the immune microenvironment in the two clusters. Through univariate Cox regression and LASSO Cox regression analysis, we constructed an iron metabolism-related lncRNA signature that included seven iron metabolism-related lncRNAs. The signature was verified to have good performance in predicting the overall survival, immune-related functions, and immunotherapy response of OS patients between the high- and low-risk groups. Conclusion: We identified an iron metabolism-related lncRNA signature that had good performance in predicting survival outcomes and showing the immune landscape for OS patients. Furthermore, our study will provide valuable information to further develop immunotherapies of OS.
Collapse
Affiliation(s)
- Shao Hong-bin
- Department of Joint Surgery, The 940 Hospital of PLA Joint Logistics Support Force, Lanzhou, China
| | - Yang Wan-jun
- The Second Affiliated Hospital of Xi’an Medical College, Xi’an, China
| | - Dong Chen-hui
- Department of Joint Surgery, The 940 Hospital of PLA Joint Logistics Support Force, Lanzhou, China
| | - Yang Xiao-jie
- Department of Joint Surgery, The 940 Hospital of PLA Joint Logistics Support Force, Lanzhou, China
| | - Li Shen-song
- Department of Joint Surgery, The 940 Hospital of PLA Joint Logistics Support Force, Lanzhou, China
| | - Zhou Peng
- Department of Joint Surgery, The 940 Hospital of PLA Joint Logistics Support Force, Lanzhou, China
- *Correspondence: Zhou Peng,
| |
Collapse
|
11
|
Growth arrest-specific 5 lncRNA as a valuable biomarker of chemoresistance in osteosarcoma. Anticancer Drugs 2022; 33:278-285. [PMID: 35045526 DOI: 10.1097/cad.0000000000001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and teenagers, and it is characterised by drug resistance and high metastatic potential. Increasing studies have highlighted the critical roles of long noncoding RNAs (lncRNAs) as oncogenes or tumour suppressors as well as new biomarkers and therapeutic targets in osteosarcoma. The growth arrestspecific 5 (GAS5) lncRNA can function as a tumour suppressor in several cancers. The present study aimed to validate GAS5 and other chemoresistanceassociated lncRNAs as biomarkers in a cohort of primary osteosarcoma samples, to obtain predictive information on resistance or sensitivity to treatment. The GAS5 and a panel of lncRNAs related to chemoresistance [SNGH1, FOXD2-AS1, deleted in lymphocytic leukemia (DLEU2) and LINC00963] were evaluated in a cohort of osteosarcoma patients enrolled at the Careggi University Hospital. Total RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue sections and the expression levels of the lncRNAs were quantified by qPCR. A bioinformatic analysis on deposited RNA-seq data was performed to validate the qPCR results. Clustering analysis shows that GAS5 could be linked to the expression of isoforms 02 and 04 of the lncRNA DLEU2, whereas the DLEU2 isoform 08 is linked to the lncRNA LINC00963. We found that GAS5 is significantly increased in patients with a good prognosis and is expressed differently between chemosensitive and chemoresistant osteosarcoma patients. However, the results obtained are not concordant with the in-silico analysis performed on the TARGET osteosarcoma dataset. In the future, we would enlarge the case series, including different disease settings.
Collapse
|