1
|
Li ZR, Wang YY, Wang ZH, Qin QL, Huang C, Shi GS, He HY, Deng YH, He XY, Zhao XM. The positive role of transforming growth factor-β1 in ischemic stroke. Cell Signal 2024; 121:111301. [PMID: 39019338 DOI: 10.1016/j.cellsig.2024.111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Ischemic stroke is one of the most disabling and fatal diseases around the world. The damaged brain tissues will undergo excessive autophagy, vascular endothelial cells injury, blood-brain barrier (BBB) impairment and neuroinflammation after ischemic stroke. However, there is no unified viewpoint on the underlying mechanism of brain damage. Transforming growth factor-β1 (TGF-β1), as a multi-functional cytokine, plays a crucial role in the intricate pathological processes and helps maintain the physiological homeostasis of brain tissues through various signaling pathways after ischemic stroke. In this review, we summarize the protective role of TGF-β1 in autophagic flux, BBB, vascular remodeling, neuroinflammation and other aspects after ischemic stroke. Based on the review, we believe that TGF-β1 could serve as a key target for treating ischemic stroke.
Collapse
Affiliation(s)
- Zi-Rong Li
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Yong-Yan Wang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Zi-Han Wang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Qi-Lin Qin
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Cheng Huang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Guang-Sen Shi
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Hong-Yun He
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China; Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, China.
| | - Yi-Hao Deng
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Xiu-Ying He
- Department of Anesthesiology, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiao-Ming Zhao
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China; Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
2
|
Singh B, Cui K, Eisa-Beygi S, Zhu B, Cowan DB, Shi J, Wang DZ, Liu Z, Bischoff J, Chen H. Elucidating the crosstalk between endothelial-to-mesenchymal transition (EndoMT) and endothelial autophagy in the pathogenesis of atherosclerosis. Vascul Pharmacol 2024; 155:107368. [PMID: 38548093 PMCID: PMC11303600 DOI: 10.1016/j.vph.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Atherosclerosis, a chronic systemic inflammatory condition, is implicated in most cardiovascular ischemic events. The pathophysiology of atherosclerosis involves various cell types and associated processes, including endothelial cell activation, monocyte recruitment, smooth muscle cell migration, involvement of macrophages and foam cells, and instability of the extracellular matrix. The process of endothelial-to-mesenchymal transition (EndoMT) has recently emerged as a pivotal process in mediating vascular inflammation associated with atherosclerosis. This transition occurs gradually, with a significant portion of endothelial cells adopting an intermediate state, characterized by a partial loss of endothelial-specific gene expression and the acquisition of "mesenchymal" traits. Consequently, this shift disrupts endothelial cell junctions, increases vascular permeability, and exacerbates inflammation, creating a self-perpetuating cycle that drives atherosclerotic progression. While endothelial cell dysfunction initiates the development of atherosclerosis, autophagy, a cellular catabolic process designed to safeguard cells by recycling intracellular molecules, is believed to exert a significant role in plaque development. Identifying the pathological mechanisms and molecular mediators of EndoMT underpinning endothelial autophagy, may be of clinical relevance. Here, we offer new insights into the underlying biology of atherosclerosis and present potential molecular mechanisms of atherosclerotic resistance and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Bandana Singh
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Douglas B Cowan
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jinjun Shi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zhenguo Liu
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Wu P, Wang X, Yin M, Zhu W, Chen Z, Zhang Y, Jiang Z, Shi L, Zhu Q. ULK1 Mediated Autophagy-Promoting Effects of Rutin-Loaded Chitosan Nanoparticles Contribute to the Activation of NF-κB Signaling Besides Inhibiting EMT in Hep3B Hepatoma Cells. Int J Nanomedicine 2024; 19:4465-4493. [PMID: 38779103 PMCID: PMC11110815 DOI: 10.2147/ijn.s443117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Background Liver cancer remains to be one of the leading causes of cancer worldwide. The treatment options face several challenges and nanomaterials have proven to improve the bioavailability of several drug candidates and their applications in nanomedicine. Specifically, chitosan nanoparticles (CNPs) are extremely biodegradable, pose enhanced biocompatibility and are considered safe for use in medicine. Methods CNPs were synthesized by ionic gelation, loaded with rutin (rCNPs) and characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The rCNPs were tested for their cytotoxic effects on human hepatoma Hep3B cells, and experiments were conducted to determine the mechanism of such effects. Further, the biocompatibility of the rCNPs was tested on L929 fibroblasts, and their hemocompatibility was determined. Results Initially, UV-vis and FTIR analyses indicated the possible loading of rutin on rCNPs. Further, the rutin load was quantitatively measured using Ultra-Performance Liquid Chromatography (UPLC) and the concentration was 88 µg/mL for 0.22 micron filtered rCNPs. The drug loading capacity (LC%) of the rCNPs was observed to be 13.29 ± 0.68%, and encapsulation efficiency (EE%) was 19.55 ± 1.01%. The drug release was pH-responsive as 88.58% of the drug was released after 24 hrs at the lysosomal pH 5.5, whereas 91.44% of the drug was released at physiological pH 7.4 after 102 hrs. The cytotoxic effects were prominent in 0.22 micron filtered samples of 5 mg/mL rutin precursor. The particle size for the rCNPs at this concentration was 144.1 nm and the polydispersity index (PDI) was 0.244, which is deemed to be ideal for tumor targeting. A zeta potential (ζ-potential) value of 16.4 mV indicated rCNPs with good stability. The IC50 value for the cytotoxic effects of rCNPs on human hepatoma Hep3B cells was 9.7 ± 0.19 μg/mL of rutin load. In addition, the increased production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential (MMP) were observed. Gene expression studies indicated that the mechanism for cytotoxic effects of rCNPs on Hep3B cells was due to the activation of Unc-51-like autophagy-activating kinase (ULK1) mediated autophagy and nuclear factor kappa B (NF-κB) signaling besides inhibiting the epithelial-mesenchymal Transition (EMT). In addition, the rCNPs were less toxic on NCTC clone 929 (L929) fibroblasts in comparison to the Hep3B cells and possessed excellent hemocompatibility (less than 2% of hemolysis). Conclusion The synthesized rCNPs were pH-responsive and possessed the physicochemical properties suitable for tumor targeting. The particles were effectively cytotoxic on Hep3B cells in comparison to normal cells and possessed excellent hemocompatibility. The very low hemolytic profile of rCNPs indicates that the drug could be administered intravenously for cancer therapy.
Collapse
Affiliation(s)
- Peng Wu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaoyong Wang
- The People’s Hospital of Rugao, Nantong, People’s Republic of China
| | - Min Yin
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenjie Zhu
- Kangda College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zheng Chen
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Zhang
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ziyu Jiang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People’s Republic of China
| | - Longqing Shi
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China
| | - Qiang Zhu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Skok Gibbs C, Mahmood O, Bonneau R, Cho K. PMF-GRN: a variational inference approach to single-cell gene regulatory network inference using probabilistic matrix factorization. Genome Biol 2024; 25:88. [PMID: 38589899 PMCID: PMC11003171 DOI: 10.1186/s13059-024-03226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Inferring gene regulatory networks (GRNs) from single-cell data is challenging due to heuristic limitations. Existing methods also lack estimates of uncertainty. Here we present Probabilistic Matrix Factorization for Gene Regulatory Network Inference (PMF-GRN). Using single-cell expression data, PMF-GRN infers latent factors capturing transcription factor activity and regulatory relationships. Using variational inference allows hyperparameter search for principled model selection and direct comparison to other generative models. We extensively test and benchmark our method using real single-cell datasets and synthetic data. We show that PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods, offering well-calibrated uncertainty estimates.
Collapse
Affiliation(s)
| | - Omar Mahmood
- Center for Data Science, New York University, New York, NY, 10011, USA
| | - Richard Bonneau
- Center for Data Science, New York University, New York, NY, 10011, USA
- Prescient Design, Genentech, New York, NY, 10010, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Kyunghyun Cho
- Center for Data Science, New York University, New York, NY, 10011, USA.
- Prescient Design, Genentech, New York, NY, 10010, USA.
| |
Collapse
|
5
|
Li T, Lei Z, Wei L, Yang K, Shen J, Hu L. Tumor Necrosis Factor Receptor-Associated Factor 6 and Human Cancer: A Systematic Review of Mechanistic Insights, Functional Roles, and Therapeutic Potential. J Cancer 2024; 15:560-576. [PMID: 38169510 PMCID: PMC10758021 DOI: 10.7150/jca.90059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer imposes a substantial burden and its incidence is persistently increasing in recent years. Cancer treatment has been difficult due to its inherently complex nature. The tumor microenvironment (TME) includes a complex interplay of cellular and noncellular constituents surrounding neoplastic cells, intricately contributing to the tumor initiation and progression. This critical aspect of tumors involves a complex interplay among cancer, stromal, and inflammatory cells, forming an inflammatory TME that promotes tumorigenesis across all stages. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is implicated in modulating various critical processes linked to tumor pathogenesis, including but not limited to the regulation of tumor cell proliferation, invasion, migration, and survival. Furthermore, TRAF6 prominently contributes to various immune and inflammatory pathways. The TRAF6-mediated activation of nuclear factor (NF)-κB in immune cells governs the production of proinflammatory cytokines. These cytokines sustain inflammation and stimulate tumor growth by activating NF-κB in tumor cells. In this review, we discuss various types of tumors, including gastrointestinal cancers, urogenital cancers, breast cancer, lung cancer, head and neck squamous cell carcinoma, uterine fibroids, and glioma. Employing a rigorous and systematic approach, we comprehensively evaluate the functional repertoire and potential roles of TRAF6 in various cancer types, thus highlighting TRAF6 as a compelling and emerging therapeutic target worthy of further investigation and development.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zhe Lei
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu, China
| | - Lin Wei
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jinhong Shen
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
| |
Collapse
|
6
|
Li J, Xian L, Zhu Z, Wang Y, Zhang W, Zheng R, Xue W, Li J. Role of CELF2 in ferroptosis: Potential targets for cancer therapy (Review). Int J Mol Med 2023; 52:88. [PMID: 37594127 PMCID: PMC10500222 DOI: 10.3892/ijmm.2023.5291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Ferroptosis is a novel form of regulated cellular necrosis that plays a critical role in promoting cancer progression and developing drug resistance. The main characteristic of ferroptosis is iron‑dependent lipid peroxidation caused by excess intracellular levels of reactive oxygen species. CUGBP ELAV‑like family number 2 (CELF2) is an RNA‑binding protein that is downregulated in various types of cancer and is associated with poor patient prognoses. CELF2 can directly bind mRNA to a variety of ferroptosis control factors; however, direct evidence of the regulatory role of CELF2 in ferroptosis is currently limited. The aim of the present review was to summarise the findings of previous studies on CELF2 and its role in regulating cellular redox homeostasis. The present review may provide insight into the possible mechanisms through which CELF2 affects ferroptosis and to provide recommendations for future studies.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Xian
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zifeng Zhu
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Wang
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wenlei Zhang
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wang Xue
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiarui Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
7
|
Smith M, Meliopoulos V, Tan S, Bub T, Brigleb PH, Sharp B, Crawford JC, Prater MS, Pruett-Miller SM, Schultz-Cherry S. The β6 Integrin Negatively Regulates TLR7-Mediated Epithelial Immunity via Autophagy During Influenza A Virus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555098. [PMID: 37693589 PMCID: PMC10491108 DOI: 10.1101/2023.08.28.555098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Integrins are essential surface receptors that sense extracellular changes to initiate various intracellular signaling cascades. The rapid activation of the epithelial-intrinsic β6 integrin during influenza A virus (IAV) infection has been linked to innate immune impairments. Yet, how β6 regulates epithelial immunity remains undefined. Here, we identify the role of β6 in mediating the Toll-like receptor 7 (TLR7) through the regulation of intracellular trafficking. We demonstrate that deletion of the β6 integrin in lung epithelial cells significantly enhances the TLR7-mediated activation of the type I interferon (IFN) response during homeostasis and respiratory infection. IAV-induced β6 facilitates TLR7 trafficking to lysosome-associated membrane protein (LAMP2a) components, leading to a reduction in endosomal compartments and associated TLR7 signaling. Our findings reveal an unappreciated role of β6-induced autophagy in influencing epithelial immune responses during influenza virus infection.
Collapse
|
8
|
Trelford CB, Dagnino L, Di Guglielmo GM. Transforming growth factor-β in tumour development. Front Mol Biosci 2022; 9:991612. [PMID: 36267157 PMCID: PMC9577372 DOI: 10.3389/fmolb.2022.991612] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a ubiquitous cytokine essential for embryonic development and postnatal tissue homeostasis. TGFβ signalling regulates several biological processes including cell growth, proliferation, apoptosis, immune function, and tissue repair following injury. Aberrant TGFβ signalling has been implicated in tumour progression and metastasis. Tumour cells, in conjunction with their microenvironment, may augment tumourigenesis using TGFβ to induce epithelial-mesenchymal transition, angiogenesis, lymphangiogenesis, immune suppression, and autophagy. Therapies that target TGFβ synthesis, TGFβ-TGFβ receptor complexes or TGFβ receptor kinase activity have proven successful in tissue culture and in animal models, yet, due to limited understanding of TGFβ biology, the outcomes of clinical trials are poor. Here, we review TGFβ signalling pathways, the biology of TGFβ during tumourigenesis, and how protein quality control pathways contribute to the tumour-promoting outcomes of TGFβ signalling.
Collapse
Affiliation(s)
- Charles B. Trelford
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Children’s Health Research Institute and Lawson Health Research Institute, London, ON, Canada
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
9
|
Trelford CB, Di Guglielmo GM. Autophagy regulates transforming growth factor β signaling and receptor trafficking. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119284. [PMID: 35605790 DOI: 10.1016/j.bbamcr.2022.119284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Transforming growth factor beta (TGFβ) stimulates tumorigenesis by inducing epithelial to mesenchymal transition (EMT) and cell migration. TGFβ signaling is regulated by the endocytosis of cell surface receptors and their subcellular trafficking into the endo-lysosomal system. Here we investigated how autophagy, a cellular quality control network that delivers material to lysosomes, regulates TGFβ signaling pathways that induce EMT and cell migration. We impaired autophagy in non-small cell lung cancer cells using chloroquine, spautin-1, ULK-101, or small interfering RNA (siRNA) targeting autophagy-related gene (ATG)5 and ATG7 and observed that inhibiting autophagy results in a decrease in TGFβ1-dependent EMT transcription factor and cell marker expression, as well as attenuated stress fiber formation and cell migration. This correlated with decreased internalization of cell surface TGFβ receptors and their trafficking to early/late endosomal and lysosomal compartments. The effects of autophagy inhibition on TGFβ signaling were investigated by Smad2/Smad3 phosphorylation and cellular localization using western blotting, subcellular fractionation, and immunofluorescence microscopy. We observed that inhibiting autophagy decreased the amount and timeframe of Smad2/Smad3 signaling. Taken together, our results suggest that inhibiting autophagy attenuates pro-tumorigenic TGFβ signaling by regulating receptor trafficking, resulting in impaired Smad2/Smad3 phosphorylation and nuclear accumulation.
Collapse
Affiliation(s)
- Charles B Trelford
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada
| | - Gianni M Di Guglielmo
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
10
|
Li J, Quan C, He YL, Cao Y, Chen Y, Wang YF, Wu LY. Autophagy regulated by the HIF/REDD1/mTORC1 signaling is progressively increased during erythroid differentiation under hypoxia. Front Cell Dev Biol 2022; 10:896893. [PMID: 36092719 PMCID: PMC9448881 DOI: 10.3389/fcell.2022.896893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
For hematopoietic stem and progenitor cells (HSPCs), hypoxia is a specific microenvironment known as the hypoxic niche. How hypoxia regulates erythroid differentiation of HSPCs remains unclear. In this study, we show that hypoxia evidently accelerates erythroid differentiation, and autophagy plays a pivotal role in this process. We further determine that mTORC1 signaling is suppressed by hypoxia to relieve its inhibition of autophagy, and with the process of erythroid differentiation, mTORC1 activity gradually decreases and autophagy activity increases accordingly. Moreover, we provide evidence that the HIF-1 target gene REDD1 is upregulated to suppress mTORC1 signaling and enhance autophagy, thereby promoting erythroid differentiation under hypoxia. Together, our study identifies that the enhanced autophagy by hypoxia favors erythroid maturation and elucidates a new regulatory pattern whereby autophagy is progressively increased during erythroid differentiation, which is driven by the HIF-1/REDD1/mTORC1 signaling in a hypoxic niche.
Collapse
|
11
|
Ham J, Lim W, Song G. Ethalfluralin impairs implantation by aggravation of mitochondrial viability and function during early pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119495. [PMID: 35605831 DOI: 10.1016/j.envpol.2022.119495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Ethalfluralin, a dinitroaniline-type herbicide, has been used for decades. As a result, its residues are detected on some farmlands. To determine the molecular mechanisms underlying the detrimental effects of ethalfluralin on early pregnancy, porcine luminal epithelium and trophectoderm cell lines were used. Ethalfluralin was found to inhibit the viability, proliferation, and migration of porcine luminal epithelial (pLE) and porcine trophectoderm (pTr) cells. Additionally, ethalfluralin induced apoptotic cell death by means of an imbalance in calcium homeostasis in both pLE and pTr cells. Ethalfluralin decreased mitochondrial membrane potential (ΔΨm) and impaired mitochondrial respiration by downregulating the mitochondrial respiratory complex-related genes. Ethalfluralin also activated endoplasmic reticulum stress signals and autophagy pathways, increased the phosphorylation of P38 MAPK and NF-κB, and suppressed the PI3K/AKT signaling pathway. Taken together, this study elucidated the molecular mechanisms by which ethalfluralin impedes the viability and mitochondrial function in fetal trophectoderm and maternal endometrial cells during early pregnancy.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
12
|
Li B, Liu Y, Sun S. Pump proton inhibitors display anti-tumour potential in glioma. Cell Prolif 2022:e13321. [PMID: 35961680 DOI: 10.1111/cpr.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Glioma is one of the most aggressive brain tumours with poor overall survival despite advanced technology in surgical resection, chemotherapy and radiation. Progression and recurrence are the hinge causes of low survival. Our aim is to explain the concrete mechanism in the proliferation and progression of tumours based on tumour microenvironment (TME). The main purpose is to illustrate the mechanism of proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflammatory response and autophagy based on the TME to induce apoptosis and enhance the sensitivity of chemoradiotherapy. FINDINGS TME is the main medium for tumour growth and progression. Acidity, hypoxia, inflammatory response, autophagy, angiogenesis and so on are the main causes of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion, have the advantages of fast onset, long action time and small adverse reactions. Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting tumour progression. However, long-term use of PPIs alone also has obvious side effects. Therefore, till now, how to apply PPIs to promote the effect of radio-chemotherapy and find the concrete dose and concentration of combined use are novel challenges. CONCLUSIONS PPIs display the potential in enhancing the sensitivity of chemoradiotherapy to defend against glioma based on TME. In the clinic, it is also necessary to explore specific concentrations and dosages in synthetic applications.
Collapse
Affiliation(s)
- Bihan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
13
|
Prolonged proteasome inhibition antagonizes TGFβ1-dependent signalling by promoting the lysosomal-targeting of TGFβ receptors. Cell Signal 2022; 98:110414. [PMID: 35901932 DOI: 10.1016/j.cellsig.2022.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023]
Abstract
Impairing autophagy disrupts transforming growth factor beta 1 (TGFβ1) signalling and epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Since autophagy and proteasome-mediated degradation are interdependent, we investigated how prolonged downregulation of proteasomal catalytic activity affected TGFβ1-dependent signalling and EMT. Proteasome-dependent degradation was inhibited in A549 and H1299 NSCLC cells using MG132 and lactacystin, which are reversible and irreversible proteasome inhibitors, respectively. We observed that inhibiting proteasomal activity for 24 h decreased TGFβ-dependent nuclear accumulation of Smad2/3. Time course studies were then carried out to characterize the time frame of this observation. Short-term (< 8 h) proteasome inhibition resulted in increased receptor regulated Smad (R-Smad) phosphorylation and steady-state TGFβ receptor type II (TGFβRII) levels. However, prolonged (8-24 h) proteasome inhibition decreased TGFβ1-dependent R-Smad phosphorylation and steady-state TGFβRI and TGFβRII levels. Furthermore, proteasome inhibition blunted TGFβ-dependent E- to N-Cadherin shift, stress fiber formation, and increased cellular apoptosis via the TAK-1-TRAF6-p38 MAPK pathway. Interestingly, proteasome inhibition also increased autophagic flux, steady-state microtubule-associated protein light chain 3B-II and active uncoordinated 51-like autophagy activating kinase 1 levels, and co-localization of lysosomes with autophagy cargo proteins and autophagy-related proteins. Finally, we observed that proteasome inhibition increased TGFβRII endocytosis and trafficking to lysosomes and we conclude that prolonged proteasome inhibition disrupts TGFβ signalling outcomes through altered TGFβ receptor trafficking.
Collapse
|
14
|
The Bright and the Dark Side of TGF-β Signaling in Hepatocellular Carcinoma: Mechanisms, Dysregulation, and Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14040940. [PMID: 35205692 PMCID: PMC8870127 DOI: 10.3390/cancers14040940] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Transforming growth factor β (TGF-β) signaling is a preeminent regulator of diverse cellular and physiological processes. Frequent dysregulation of TGF-β signaling has been implicated in cancer. In hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer, the autocrine and paracrine effects of TGF-β have paradoxical implications. While acting as a potent tumor suppressor pathway in the early stages of malignancy, TGF-β diverts to a promoter of tumor progression in the late stages, reflecting its bright and dark natures, respectively. Within this context, targeting TGF-β represents a promising therapeutic option for HCC treatment. We discuss here the molecular properties of TGF-β signaling in HCC, attempting to provide an overview of its effects on tumor cells and the stroma. We also seek to evaluate the dysregulation mechanisms that mediate the functional switch of TGF-β from a tumor suppressor to a pro-tumorigenic signal. Finally, we reconcile its biphasic nature with the therapeutic implications. Abstract Hepatocellular carcinoma (HCC) is associated with genetic and nongenetic aberrations that impact multiple genes and pathways, including the frequently dysregulated transforming growth factor β (TGF-β) signaling pathway. The regulatory cytokine TGF-β and its signaling effectors govern a broad spectrum of spatiotemporally regulated molecular and cellular responses, yet paradoxically have dual and opposing roles in HCC progression. In the early stages of tumorigenesis, TGF-β signaling enforces profound tumor-suppressive effects, primarily by inducing cell cycle arrest, cellular senescence, autophagy, and apoptosis. However, as the tumor advances in malignant progression, TGF-β functionally switches to a pro-tumorigenic signal, eliciting aggressive tumor traits, such as epithelial–mesenchymal transition, tumor microenvironment remodeling, and immune evasion of cancer cells. On this account, the inhibition of TGF-β signaling is recognized as a promising therapeutic strategy for advanced HCC. In this review, we evaluate the functions and mechanisms of TGF-β signaling and relate its complex and pleiotropic biology to HCC pathophysiology, attempting to provide a detailed perspective on the molecular determinants underlying its functional diversion. We also address the therapeutic implications of the dichotomous nature of TGF-β signaling and highlight the rationale for targeting this pathway for HCC treatment, alone or in combination with other agents.
Collapse
|