1
|
Quiñones LS, Gonzalez FS, Darden C, Khan M, Tripathi A, Smith JT, Davis J, Misra S, Chaudhuri M. Unique Interactions of the Small Translocases of the Mitochondrial Inner Membrane (Tims) in Trypanosoma brucei. Int J Mol Sci 2024; 25:1415. [PMID: 38338692 PMCID: PMC10855554 DOI: 10.3390/ijms25031415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The infectious agent for African trypanosomiasis, Trypanosoma brucei, possesses a unique and essential translocase of the mitochondrial inner membrane, known as the TbTIM17 complex. TbTim17 associates with six small TbTims (TbTim9, TbTim10, TbTim11, TbTim12, TbTim13, and TbTim8/13). However, the interaction patterns of these smaller TbTims with each other and TbTim17 are not clear. Through yeast two-hybrid (Y2H) and co-immunoprecipitation analyses, we demonstrate that all six small TbTims interact with each other. Stronger interactions were found among TbTim8/13, TbTim9, and TbTim10. However, TbTim10 shows weaker associations with TbTim13, which has a stronger connection with TbTim17. Each of the small TbTims also interacts strongly with the C-terminal region of TbTim17. RNAi studies indicated that among all small TbTims, TbTim13 is most crucial for maintaining the steady-state levels of the TbTIM17 complex. Further analysis of the small TbTim complexes by size exclusion chromatography revealed that each small TbTim, except for TbTim13, is present in ~70 kDa complexes, possibly existing in heterohexameric forms. In contrast, TbTim13 is primarily present in the larger complex (>800 kDa) and co-fractionates with TbTim17. Altogether, our results demonstrate that, relative to other eukaryotes, the architecture and function of the small TbTim complexes are specific to T. brucei.
Collapse
Affiliation(s)
- Linda S. Quiñones
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Fidel Soto Gonzalez
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Chauncey Darden
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.D.)
| | - Muhammad Khan
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Anuj Tripathi
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Joseph T. Smith
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.D.)
| | - Smita Misra
- Department of Biomedical Science, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA;
| | - Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| |
Collapse
|
2
|
Muzzioli R, Gallo A. The Interaction and Effect of a Small MitoBlock Library as Inhibitor of ALR Protein-Protein Interaction Pathway. Int J Mol Sci 2024; 25:1174. [PMID: 38256258 PMCID: PMC10816046 DOI: 10.3390/ijms25021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
MIA40 and ALR of the MIA pathway mediate the import of protein precursors that form disulfides into the mitochondrial intermembrane space. This import pathway is suggested to be a linear pathway in which MIA40 first binds to the precursor via a disulfide linkage and oxidizes it. Subsequently, ALR re-oxidizes MIA40 and then ALR transfers electrons to terminal electron acceptors. However, the precise mechanism by which ALR and MIA40 coordinate translocation is unknown. With a collection of small molecule modulators (MB-5 to MB-9 and MB-13) that inhibit ALR activity, we characterized the import mechanism in mitochondria. NMR studies show that most of the compounds bind to a similar region in ALR. Mechanistic studies with small molecules demonstrate that treatment with compound MB-6 locks the precursor in a state bound to MIA40, blocking re-oxidation of MIA40 by ALR. Thus, small molecules that target a similar region in ALR alter the dynamics of the MIA import pathway differently, resulting in a set of probes that are useful for studying the catalysis of the redox-regulated import pathway in model systems.
Collapse
Affiliation(s)
- Riccardo Muzzioli
- CERM, University of Florence, Via L Sacconi 9, 50019 Sesto Fiorentino, Italy
| | - Angelo Gallo
- CERM, University of Florence, Via L Sacconi 9, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Dong Y, Zhang Y, Feng Y, An W. The protective roles of augmenter of liver regeneration in hepatocytes in the non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:928606. [PMID: 36304168 PMCID: PMC9592723 DOI: 10.3389/fphar.2022.928606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) occurs in 25% of the global population and manifests as lipid deposition, hepatocyte injury, activation of Kupffer and stellate cells, and steatohepatitis. Predominantly expressed in hepatocytes, the augmenter of liver regeneration (ALR) is a key factor in liver regulation that can alleviate fatty liver disease and protect the liver from abnormal liver lipid metabolism. ALR has three isoforms (15-, 21-, and 23-kDa), amongst which 23-kDa ALR is the most extensively studied. The 23-kDa ALR isoform is a sulfhydryl oxidase that resides primarily in the mitochondrial intermembrane space (IMS), whereby it protects the liver against various types of injury. In this review, we describe the role of ALR in regulating hepatocytes in the context of NAFLD. We also discuss questions about ALR that remain to be explored in the future. In conclusion, ALR appears to be a promising therapeutic target for treating NAFLD.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuejie Zhang
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| | - Wei An
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| |
Collapse
|
4
|
Criscuolo D, Avolio R, Matassa DS, Esposito F. Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Front Oncol 2021; 11:797265. [PMID: 34888254 PMCID: PMC8650000 DOI: 10.3389/fonc.2021.797265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation. Accumulating evidence in multiple organisms shows that the metabolic functions of mitochondria are tightly connected to protein synthesis, being assembly and activity of respiratory complexes highly dependent on de novo synthesis of their components. In turn, protein synthesis within the organelle is tightly connected with the cytosolic process. This implies an entire network of interactions and fine-tuned regulations that build up a completely under-estimated level of complexity. We are now only preliminarily beginning to reconstitute such regulatory level in human cells, and to perceive its role in diseases. Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and energetic stress that could be potentially exploited for therapeutic purposes. In this review, we summarize the available literature on the coordinated regulation of mitochondrial and cytosolic mRNA translation, and their effects on the integrity of the mitochondrial proteome and functions. Finally, we highlight the potential held by this topic for future research directions and for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|