1
|
Rezaei A, Kocsis-Jutka V, Gunes ZI, Zeng Q, Kislinger G, Bauernschmitt F, Isilgan HB, Parisi LR, Kaya T, Franzenburg S, Koppenbrink J, Knogler J, Arzberger T, Farny D, Nuscher B, Katona E, Dhingra A, Yang C, Gouna G, LaClair KD, Janjic A, Enard W, Zhou Q, Hagan N, Ofengeim D, Beltrán E, Gokce O, Simons M, Liebscher S, Edbauer D. Correction of dysregulated lipid metabolism normalizes gene expression in oligodendrocytes and prolongs lifespan in female poly-GA C9orf72 mice. Nat Commun 2025; 16:3442. [PMID: 40216746 PMCID: PMC11992041 DOI: 10.1038/s41467-025-58634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Clinical and genetic research links altered cholesterol metabolism with ALS development and progression, yet pinpointing specific pathomechanisms remain challenging. We investigated how cholesterol dysmetabolism interacts with protein aggregation, demyelination, and neuronal loss in ALS. Bulk RNAseq transcriptomics showed decreased cholesterol biosynthesis and increased cholesterol export in ALS mouse models (GA-Nes, GA-Camk2a GA-CFP, rNLS8) and patient samples (spinal cord), suggesting an adaptive response to cholesterol overload. Consequently, we assessed the efficacy of the cholesterol-binding drug 2-hydroxypropyl-β-cyclodextrin (CD) in a fast-progressing C9orf72 ALS mouse model with extensive poly-GA expression and myelination deficits. CD treatment normalized cholesteryl ester levels, lowered neurofilament light chain levels, and prolonged lifespan in female but not male GA-Nes mice, without impacting poly-GA aggregates. Single nucleus transcriptomics indicated that CD primarily affected oligodendrocytes, significantly restored myelin gene expression, increased density of myelinated axons, inhibited the disease-associated oligodendrocyte response, and downregulated the lipid-associated genes Plin4 and ApoD. These results suggest that reducing excess free cholesterol in the CNS could be a viable ALS treatment strategy.
Collapse
Affiliation(s)
- Ali Rezaei
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | | | - Zeynep I Gunes
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Qing Zeng
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Georg Kislinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Franz Bauernschmitt
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | | | - Laura R Parisi
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | - Tuğberk Kaya
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Jonas Koppenbrink
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Julia Knogler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Brigitte Nuscher
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Eszter Katona
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Ashutosh Dhingra
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Chao Yang
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Garyfallia Gouna
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | | | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nellwyn Hagan
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | | | - Eduardo Beltrán
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Ozgun Gokce
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Sabine Liebscher
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
- Institute of Neurobiochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
| |
Collapse
|
2
|
Marvian AT, Strauss T, Tang Q, Tuck BJ, Keeling S, Rüdiger D, Mirzazadeh Dizaji N, Mohammad-Beigi H, Nuscher B, Chakraborty P, Sutherland DS, McEwan WA, Köglsperger T, Zahler S, Zweckstetter M, Lichtenthaler SF, Wurst W, Schwarz S, Höglinger G. Distinct regulation of Tau Monomer and aggregate uptake and intracellular accumulation in human neurons. Mol Neurodegener 2024; 19:100. [PMID: 39736627 DOI: 10.1186/s13024-024-00786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates. However, similarities or differences in neuronal transport mechanisms between Tau species remain elusive. METHOD Monomers, oligomers, and fibrils of recombinant 2N4R Tau were produced and characterized by biochemical and biophysical methods. A neuronal eTau uptake and accumulation assay was developed for human induced pluripotent stem cell-derived neurons (iPSCNs) and Lund human mesencephalic cells (LUHMES)-derived neurons. Mechanisms of uptake and cellular accumulation of eTau species were studied by using small molecule inhibitors of endocytic mechanisms and siRNAs targeting Tau uptake mediators. RESULTS Extracellular Tau aggregates accumulated more than monomers in human neurons, mainly due to the higher efficiency of small fibrillar and soluble oligomeric aggregates in intraneuronal accumulation. A competition assay revealed a distinction in the neuronal accumulation between physiological eTau Monomers and pathology-relevant aggregates, suggesting differential transport mechanisms. Blocking heparan sulfate proteoglycans (HSPGs) with heparin only inhibited the accumulation of eTau aggregates, whereas monomers' uptake remained unaltered. At the molecular level, the downregulation of genes involved in HSPG synthesis exclusively blocked neuronal accumulation of eTau aggregates but not monomers, suggesting its role in the transport of pathologic Tau. Moreover, the knockdown of LRP1, as a receptor of Tau, mainly reduced the accumulation of monomeric form, confirming its involvement in Tau's physiological transport. CONCLUSION These data propose that despite the similarity in the cellular mechanism, the uptake and accumulation of eTau Monomers and aggregates in human neurons are regulated by different molecular mediators. Thus, they address the possibility of targeting the pathological spreading of Tau aggregates without disturbing the probable physiological or non-pathogenic transport of Tau Monomers.
Collapse
Affiliation(s)
- Amir T Marvian
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Tabea Strauss
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
| | - Qilin Tang
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
| | - Benjamin J Tuck
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel Rüdiger
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Negar Mirzazadeh Dizaji
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Hossein Mohammad-Beigi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Brigitte Nuscher
- Division of Metabolic Biochemistry, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Gӧttingen, Germany
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Thomas Köglsperger
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Gӧttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Gӧttingen, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Freising, Germany
| | - Sigrid Schwarz
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Haag, Geriatric Clinic Haag, Oberbayern, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Department of Neurology, Hanover Medical School, Hanover, Germany.
- Center for Systems Neuroscience, Hanover, Germany.
| |
Collapse
|
3
|
Esteves F, Brito D, Rajado AT, Silva N, Apolónio J, Roberto VP, Araújo I, Nóbrega C, Castelo-Branco P, Bragança J. Reprogramming iPSCs to study age-related diseases: Models, therapeutics, and clinical trials. Mech Ageing Dev 2023; 214:111854. [PMID: 37579530 DOI: 10.1016/j.mad.2023.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The unprecedented rise in life expectancy observed in the last decades is leading to a global increase in the ageing population, and age-associated diseases became an increasing societal, economic, and medical burden. This has boosted major efforts in the scientific and medical research communities to develop and improve therapies to delay ageing and age-associated functional decline and diseases, and to expand health span. The establishment of induced pluripotent stem cells (iPSCs) by reprogramming human somatic cells has revolutionised the modelling and understanding of human diseases. iPSCs have a major advantage relative to other human pluripotent stem cells as their obtention does not require the destruction of embryos like embryonic stem cells do, and do not have a limited proliferation or differentiation potential as adult stem cells. Besides, iPSCs can be generated from somatic cells from healthy individuals or patients, which makes iPSC technology a promising approach to model and decipher the mechanisms underlying the ageing process and age-associated diseases, study drug effects, and develop new therapeutic approaches. This review discusses the advances made in the last decade using iPSC technology to study the most common age-associated diseases, including age-related macular degeneration (AMD), neurodegenerative and cardiovascular diseases, brain stroke, cancer, diabetes, and osteoarthritis.
Collapse
Affiliation(s)
- Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - David Brito
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Ana Teresa Rajado
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Nádia Silva
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Joana Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Vânia Palma Roberto
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
| | - Inês Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
4
|
Tauber CV, Schwarz SC, Rösler TW, Arzberger T, Gentleman S, Windl O, Krumbiegel M, Reis A, Ruf VC, Herms J, Höglinger GU. Different MAPT haplotypes influence expression of total MAPT in postmortem brain tissue. Acta Neuropathol Commun 2023; 11:40. [PMID: 36906636 PMCID: PMC10008602 DOI: 10.1186/s40478-023-01534-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
The MAPT gene, encoding the microtubule-associated protein tau on chromosome 17q21.31, is result of an inversion polymorphism, leading to two allelic variants (H1 and H2). Homozygosity for the more common haplotype H1 is associated with an increased risk for several tauopathies, but also for the synucleinopathy Parkinson's disease (PD). In the present study, we aimed to clarify whether the MAPT haplotype influences expression of MAPT and SNCA, encoding the protein α-synuclein (α-syn), on mRNA and protein levels in postmortem brains of PD patients and controls. We also investigated mRNA expression of several other MAPT haplotype-encoded genes. Postmortem tissues from cortex of fusiform gyrus (ctx-fg) and of the cerebellar hemisphere (ctx-cbl) of neuropathologically confirmed PD patients (n = 95) and age- and sex-matched controls (n = 81) were MAPT haplotype genotyped to identify cases homozygous for either H1 or H2. Relative expression of genes was quantified using real-time qPCR; soluble and insoluble protein levels of tau and α-syn were determined by Western blotting. Homozygosity for H1 versus H2 was associated with increased total MAPT mRNA expression in ctx-fg regardless of disease state. Inversely, H2 homozygosity was associated with markedly increased expression of the corresponding antisense MAPT-AS1 in ctx-cbl. PD patients had higher levels of insoluble 0N3R and 1N4R tau isoforms regardless of the MAPT genotype. The increased presence of insoluble α-syn in PD patients in ctx-fg validated the selected postmortem brain tissue. Our findings in this small, but well controlled cohort of PD and controls support a putative biological relevance of tau in PD. However, we did not identify any link between the disease-predisposing H1/H1 associated overexpression of MAPT with PD status. Further studies are required to gain a deeper understanding of the potential regulatory role of MAPT-AS1 and its association to the disease-protective H2/H2 condition in the context of PD.
Collapse
Affiliation(s)
- Christina V Tauber
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, School of Medicine, Technical University Munich, Munich, Germany.,Department of Obstetrics and Gynecology, Ludiwgs-Maximilians University of Munich, Munich, Germany
| | - Sigrid C Schwarz
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas W Rösler
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, School of Medicine, Technical University Munich, Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Steve Gentleman
- Parkinson's UK Brain Bank, Department of Brain Sciences, Imperial College London, London, UK.,Neuropathology Unit, Department of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Otto Windl
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Viktoria C Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany. .,Department of Neurology, Ludwig-Maximilians University of Munich, Munich, Germany.
| |
Collapse
|
5
|
Kühn R, Mahajan A, Canoll P, Hargus G. Human Induced Pluripotent Stem Cell Models of Frontotemporal Dementia With Tau Pathology. Front Cell Dev Biol 2021; 9:766773. [PMID: 34858989 PMCID: PMC8631302 DOI: 10.3389/fcell.2021.766773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/04/2022] Open
Abstract
Neurodegenerative dementias are the most common group of neurodegenerative diseases affecting more than 40 million people worldwide. One of these diseases is frontotemporal dementia (FTD), an early onset dementia and one of the leading causes of dementia in people under the age of 60. FTD is a heterogeneous group of neurodegenerative disorders with pathological accumulation of particular proteins in neurons and glial cells including the microtubule-associated protein tau, which is deposited in its hyperphosphorylated form in about half of all patients with FTD. As for other patients with dementia, there is currently no cure for patients with FTD and thus several lines of research focus on the characterization of underlying pathogenic mechanisms with the goal to identify therapeutic targets. In this review, we provide an overview of reported disease phenotypes in induced pluripotent stem cell (iPSC)-derived neurons and glial cells from patients with tau-associated FTD with the aim to highlight recent progress in this fast-moving field of iPSC disease modeling. We put a particular focus on genetic forms of the disease that are linked to mutations in the gene encoding tau and summarize mutation-associated changes in FTD patient cells related to tau splicing and tau phosphorylation, microtubule function and cell metabolism as well as calcium homeostasis and cellular stress. In addition, we discuss challenges and limitations but also opportunities using differentiated patient-derived iPSCs for disease modeling and biomedical research on neurodegenerative diseases including FTD.
Collapse
Affiliation(s)
- Rebekka Kühn
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| |
Collapse
|