1
|
Bhutta ZA, Choi KC. Canine mammary tumors as a promising adjunct preclinical model for human breast cancer research: similarities, opportunities, and challenges. Arch Pharm Res 2025; 48:43-61. [PMID: 39752109 DOI: 10.1007/s12272-024-01524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Despite significant progress in the field of human breast cancer research and treatment, there is a consistent increase in the incidence rate of 0.5 percent annually, posing challenges in the development of effective novel therapeutic strategies. The failure rate of drugs in clinical trials stands at approximately 95%, primarily attributed to the limitations and lack of reliability of existing preclinical models, such as mice, which do not mimic human tumor biology. This article examines the potential utility of canine mammary tumors as an adjunct preclinical model for investigating human breast cancer. Given the numerous similarities between canine and human breast cancer, canines present a promising alternative model. The discussion delves into the intricate molecular and clinical aspects of human breast cancer and canine mammary tumors, shedding light on the tumors' molecular profiles, identifying specific molecular markers, and the application of radiological imaging modalities. Furthermore, the manuscript addresses the current constraints of preclinical cancer studies, the benefits of using canines as models, and the obstacles linked to the canine mammary tumors model. By concentrating on these elements, this review aims to highlight the viability of canine models in enhancing our understanding and management of human breast cancer.
Collapse
Affiliation(s)
- Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
2
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Toner J, Gordon JAR, Greenyer H, Kaufman P, Stein JL, Stein GS, Lian JB. RUNX2 as a Prognostic Factor in Human Cancers. Crit Rev Eukaryot Gene Expr 2024; 34:51-66. [PMID: 39072409 DOI: 10.1615/critreveukaryotgeneexpr.2024054162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The RUNX2 transcription factor was discovered as an essential transcriptional regulator for commitment to osteoblast lineage cells and bone formation. Expression of RUNX2 in other tissues, such as breast, prostate, and lung, has been linked to oncogenesis, cancer progression, and metastasis. In this study, we sought to determine the extent of RUNX2 involvement in other tumors using a pan-cancer analysis strategy. We correlated RUNX2 expression and clinical-pathological parameters in human cancers by interrogating publicly available multiparameter clinical data. Our analysis demonstrated that altered RUNX2 expression or function is associated with several cancer types from different tissues. We identified three tumor types associated with increased RUNX2 expression and four other tumor types associated with decreased RUNX2 expression. Our pan-cancer analysis for RUNX2 revealed numerous other discoveries for RUNX2 regulation of different cancers identified in each of the pan-cancer databases. Both up and down regulation of RUNX2 was observed during progression of specific types of cancers in promoting the distinct types of cancers.
Collapse
Affiliation(s)
- J Toner
- Department of Biochemistry, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Johnathan A R Gordon
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA; University of Vermont Cancer Center, Burlington, Vermont, USA
| | - H Greenyer
- Department of Biochemistry, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Peter Kaufman
- Hematology/Oncology Division, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT 05405; University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT 05405; University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Jane B Lian
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT 05405; University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT 05405
| |
Collapse
|
4
|
Li J, Yin Y, Huang H, Li M, Li H, Zhang M, Jiang C, Yang R. RUNX1 methylation as a cancer biomarker in differentiating papillary thyroid cancer from benign thyroid nodules. Epigenomics 2023; 15:1257-1272. [PMID: 38126720 DOI: 10.2217/epi-2023-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aim: It remains a challenge to accurately identify malignancy of thyroid nodules when biopsy is indeterminate. The authors aimed to investigate the abnormal DNA methylation signatures in papillary thyroid cancer (PTC) compared with benign thyroid nodules (BTNs). Methods: The authors performed genome profiling by 850K array and RNA sequencing in early-stage PTC and BTN tissue samples. The identified gene was validated in two independent case-control studies using mass spectrometry. Results: Hypomethylation of RUNX1 in PTC was identified and verified (all odds ratios: ≥1.50). RUNX1 methylation achieved good accuracy in differentiating early-stage PTC from BTNs, especially for younger women. Conclusion: The authors disclosed a significant association between RUNX1 hypomethylation and PTC, suggesting RUNX1 methylation as a potential biomarker for companion diagnosis of malignant thyroid nodules.
Collapse
Affiliation(s)
- Junjie Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| | - Yifei Yin
- Department of Thyroid & Breast Surgery, Affiliated Huai'an Hospital of Xuzhou Medical University & Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Haixia Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| | - Mengxia Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| | - Hong Li
- Department of Pathology, Affiliated Huai'an Hospital of Xuzhou Medical University & Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Minmin Zhang
- Department of Thyroid & Breast Surgery, Affiliated Huai'an Hospital of Xuzhou Medical University & Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Chenxia Jiang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| |
Collapse
|
5
|
Zhang X, Han L, Zhang H, Niu Y, Liang R. Identification of potential key genes of TGF-beta signaling associated with the immune response and prognosis of ovarian cancer based on bioinformatics analysis. Heliyon 2023; 9:e19208. [PMID: 37664697 PMCID: PMC10469581 DOI: 10.1016/j.heliyon.2023.e19208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Background TGF-beta signaling is a key regulator of immunity and multiple cellular behaviors in cancer. However, the prognostic and therapeutic role of TGF-beta signaling-related genes in ovarian cancer (OV) remains unexplored. Methods Data of OV used in the current study were sourced from TCGA and GEO databases. Consensus clustering was applied to classify OV patients into different clusters using TGF-beta signaling-related genes. Differentially expressed genes (DEGs) between different clusters were screened by the "limma" R package. Prognostic genes were screened from DEGs by univariate Cox regression, followed by the construction of the TGF-beta signaling-related score. The prognostic value of TGF-beta signaling-related score was evaluated in both training and testing OV cohorts. Moreover, the immune status, GSEA and therapeutic response between low- and high-score groups were performed to further reveal the potential mechanisms. Results By consensus clustering, OV patients were classified into two clusters with different tumor immune environments. After differential expression and univariate Cox regression analyses, GMPR, PIEZO1, EMP1, CXCL13, GADD45B, SORCS2, FOSL2, PODN, LYNX1 and SLC38A5 were selected as prognostic genes. Using PCA algorithm, the TGF-beta signaling-related score of OV patients was calculated based on prognostic genes. Then OV patients were divided into low- and high-TGF-beta signaling-related score groups. We observed that the two score groups had significantly different survivals, tumor immune environments and expressions of immune checkpoints. In addition, GSEA results showed that immune-related pathways and biological processes, like chemokine signaling pathway, TNF signaling pathway and T cell migration were significantly enriched in the low-score group. Moreover, patients in the low- and high-score groups had remarkably different sensitivity to chemo- and immunotherapy. Conclusion For the first time, our study identified ten prognostic genes associated with TGF-beta signaling, constructed a prognostic TGF-beta signaling-related score and investigated the effect of TGF-beta signaling-related score on OV immunity and therapy. These findings may enrich our knowledge of the TGF-beta signaling in OV prognosis and help to improve the prognosis prediction and treatment strategies in OV.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Physical Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Liping Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Huimin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yameng Niu
- Department of Physical Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
6
|
Wu Q, Zheng S, Lin N, Xie X. Comprehensive research into prognostic and immune signatures of transcription factor family in breast cancer. BMC Med Genomics 2023; 16:87. [PMID: 37098532 PMCID: PMC10127334 DOI: 10.1186/s12920-023-01521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/15/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Breast cancer (BRCA) is the most common malignancy with high morbidity and mortality in women, and transcription factor (TF) is closely related to the occurrence and development of BRCA. This study was designed to identify a prognostic gene signature based on TF family to reveal immune characteristics and prognostic survival of BRCA. METHODS In this study, RNA-sequence with corresponding clinical data were obtained from The Cancer Genome Atlas (TCGA) and GSE42568. Prognostic differentially expressed transcription factor family genes (TFDEGs) were screened to construct a risk score model, after which BRCA patients were stratified into low-risk and high-risk groups based on their corresponding risk scores. Kaplan-Meier (KM) analysis was applied to evaluate the prognostic implication of risk score model, and a nomogram model was developed and validated with the TCGA and GSE20685. Furthermore, the GSEA revealed pathological processes and signaling pathways enriched in the low-risk and high-risk groups. Finally, analyses regarding levels of immune infiltration, immune checkpoints and chemotactic factors were all completed to investigate the correlation between the risk score and tumor immune microenvironment (TIME). RESULTS A prognostic 9-gene signature based on TFDEGs was selected to establish a risk score model. According to KM analyses, high-risk group witnessed a significantly worse overall survival (OS) than low-risk group in both TCGA-BRCA and GSE20685. Furthermore, the nomogram model proved great possibility in predicting the OS of BRCA patients. As indicted in GSEA analysis, tumor-associated pathological processes and pathways were relatively enriched in high-risk group, and the risk score was negatively correlated with ESTIMATE score, infiltration levels of CD4+ and CD8+T cells, as well as expression levels of immune checkpoints and chemotactic factors. CONCLUSIONS The prognostic model based on TFDEGs could distinguish as a novel biomarker for predicting prognosis of BRCA patients; in addition, it may also be utilized to identify potential benefit population from immunotherapy in different TIME and predict potential drug targets.
Collapse
Affiliation(s)
- Qing Wu
- Department of Oncology, Molecule Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shiyao Zheng
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, Fujian, China
| | - Nan Lin
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Gastrointestinal Surgery, The 900th Hospital of Joint Logistics Support Forces of Chinese PLA, Fuzhou, Fujian, China
| | - Xianhe Xie
- Department of Oncology, Molecule Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China.
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
7
|
Khan AS, Campbell KJ, Cameron ER, Blyth K. The RUNX/CBFβ Complex in Breast Cancer: A Conundrum of Context. Cells 2023; 12:641. [PMID: 36831308 PMCID: PMC9953914 DOI: 10.3390/cells12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Dissecting and identifying the major actors and pathways in the genesis, progression and aggressive advancement of breast cancer is challenging, in part because neoplasms arising in this tissue represent distinct diseases and in part because the tumors themselves evolve. This review attempts to illustrate the complexity of this mutational landscape as it pertains to the RUNX genes and their transcription co-factor CBFβ. Large-scale genomic studies that characterize genetic alterations across a disease subtype are a useful starting point and as such have identified recurring alterations in CBFB and in the RUNX genes (particularly RUNX1). Intriguingly, the functional output of these mutations is often context dependent with regards to the estrogen receptor (ER) status of the breast cancer. Therefore, such studies need to be integrated with an in-depth understanding of both the normal and corrupted function in mammary cells to begin to tease out how loss or gain of function can alter the cell phenotype and contribute to disease progression. We review how alterations to RUNX/CBFβ function contextually ascribe to breast cancer subtypes and discuss how the in vitro analyses and mouse model systems have contributed to our current understanding of these proteins in the pathogenesis of this complex set of diseases.
Collapse
Affiliation(s)
- Adiba S. Khan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kirsteen J. Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
| | - Ewan R. Cameron
- School of Biodiversity One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
8
|
Chen X, Liu X, Cai D, Wang W, Cui C, Yang J, Xu X, Li Z. Sequencing-based network analysis provides a core set of genes for understanding hemolymph immune response mechanisms against Poly I:C stimulation in Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108544. [PMID: 36646339 DOI: 10.1016/j.fsi.2023.108544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Aquatic viruses can spread rapidly and widely in seawater for their high infective ability. Polyinosinic-polycytidylic acid (Poly I:C), a viral dsRNA analog, is an immunostimulant that has been proved to activate various immune responses of immune cells in invertebrate. Hemolymph is a critical site that host immune response in invertebrates, and its transcriptome information obtained from Amphioctopus fangsiao stimulated by Poly I:C is crucial for understanding the antiviral molecular mechanisms of this species. In this study, we analyzed gene expression data in A. fangsiao hemolymph tissue within 24 h under Poly I:C stimulation and found 1082 and 299 differentially expressed genes (DEGs) at 6 and 24 h, respectively. Union set (1,369) DEGs were selected for subsequent analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were carried out for identifying DEGs related to immunity. Several significant immune-related terms and pathways, such as toll-like receptor signaling pathways term, inflammatory response term, TNF signaling pathway, and chemokine signaling pathway were identified. A protein-protein interaction (PPI) network was constructed for examining the relationships among immune-related genes. Finally, 12 hub genes, including EGFR, ACTG1, MAP2K1, and other nine hub genes, were identified based on the KEGG enrichment analysis and PPI network. The quantitative RT-PCR (qRT-PCR) was used to verify the expression profile of 12 hub genes. This research provides a reference for solving the problem of high mortality of A. fangsiao and other mollusks and provides a reference for the future production of some disease-resistant A. fangsiao.
Collapse
Affiliation(s)
- Xipan Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Dequan Cai
- Weihai Marine Development Research Institute, Weihai, 264200, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Cuiju Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
9
|
Chan MKK, Chung JYF, Tang PCT, Chan ASW, Ho JYY, Lin TPT, Chen J, Leung KT, To KF, Lan HY, Tang PMK. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550:215925. [DOI: 10.1016/j.canlet.2022.215925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
10
|
Fu J, Sun H, Xu F, Chen R, Wang X, Ding Q, Xia T. RUNX regulated immune-associated genes predicts prognosis in breast cancer. Front Genet 2022; 13:960489. [PMID: 36092942 PMCID: PMC9459239 DOI: 10.3389/fgene.2022.960489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Breast cancer is the most common malignant tumor in women. RUNX family has been involved in the regulation of different carcinogenic processes and signaling pathways with cancer, which is closely related to immunity and prognosis of various tumors, and also plays an important role in the development and prognosis of breast cancer. Methods: We discovered the expression of RUNX family through GEPIA Dataset and then evaluated the relationship between RUNX family and immune-related genes and the prognosis of breast cancer through analyzing TCGA database. A prognostic model was established and verified via cox proportional hazards regression model using R packages. We evaluated the accuracy of the prognostic model by Kaplan-Meier curves and receiver operating characteristic (ROC) curves. Additionally, we obtained the relationship between the RUNX family and immune infiltration by TIMER database. Finally, the dual luciferase reporter assay was used to verify the regulation of RUNX3 on potential target genes ULBP2 and TRDV1, and the effects of ULBP2 and TRDV1 on the growth of breast cancer cells were explored by CCK-8, colony formation and wound healing assays. Results: We screened out RUNX family-regulated immune-related genes associated with the prognosis of breast cancer. These predictors included PSME2, ULBP2, IL-18, TSLP, NPR3, TRDV1. Then a prognosis-related risk score model was built using the independent risk factors to provide a clinically appropriate method predicting the overall survival (OS) probability of the patients with breast cancer. In addition, a further research was made on the functions of high risk immune gene ULBP2 and low risk immune gene TRDV1 which regulated by RUNX3, the results showed that down-regulation of ULBP2 suppressed breast cancer cell proliferation and TRDV1 had the opposite functions. The prognostic model we constructed could promote the development of prognostic, and was associated with lower immune infiltration. Conclusion: The expression of RUNX family was closely related to the prognosis of breast cancer. At the same time, RUNX family could modulate the functions of immune-related genes, and affect the development and prognosis of breast cancer. These immune-related genes regulated by RUNX family could be promising prognostic biomarkers and therapeutic targets in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiang Ding
- *Correspondence: Tiansong Xia, ; Qiang Ding,
| | | |
Collapse
|
11
|
Wang X, Wang Y, Sun F, Xu Y, Zhang Z, Yang C, Zhang L, Lou G. Novel LncRNA ZFHX4-AS1 as a Potential Prognostic Biomarker That Affects the Immune Microenvironment in Ovarian Cancer. Front Oncol 2022; 12:945518. [PMID: 35903691 PMCID: PMC9315108 DOI: 10.3389/fonc.2022.945518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 01/07/2023] Open
Abstract
Background Ovarian cancer (OvCa) is a malignant disease of the female reproductive system with a high mortality rate. LncRNA has been confirmed to play a crucial role in the development and progression of various cancer types. Novel lncRNA ZFHX4-AS1 has been reported in several cancers, albeit its functional mechanisms in OvCa remain unclear. Methods With reference to the public databases and based on integrating bioinformatics analyses, we explored the expression of ZFHX4-AS1 and its roles in the prognosis of OvCa. We employed the Kaplan-Meier curves to investigate the outcome of patients with different ZFHX4-AS1 expressions. Furthermore, its biological function and the related hallmark pathways were assessed through Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and Gene-set enrichment analysis (GSEA). We explored the correlation between lncRNA ZFHX4-AS1 and tumor-infiltrating immune cells through CIBERSORT. The immune checkpoints associated with lncRNA ZFHX4-AS1 and its related genes were investigated. The effect of lncRNA ZFHX4-AS1 on proliferation, invasion and migration of OvCa cells was verified through Cell Counting Kit (CCK)-8, colony formation, wound healing and transwell assays. Results The expression of lncRNA ZFHX4-AS1 was upregulated in OvCa relative to that in normal tissues. Increased lncRNA ZFHX4-AS1 expression was associated with poor overall survival and progression-free survival in OvCa. The GO and KEGG pathway analyses revealed the role of lncRNA ZFHX4-AS1 in cell metabolism, protein synthesis, cell proliferation, and cell cycle. GSEA indicated the hallmark gene sets that were significantly enriched in the high and low expression groups. The CIBERSORT database revealed M2 macrophages, memory B-cells, naïve B cells, and activated NK cells were affected by lncRNA ZFHX4-AS1 expression (all P < 0.05). The expression of lncRNA ZFHX4-AS1 and its related differential genes MRPS11, NSA2, and MRPL13 were significantly correlated with the immune checkpoints. Knockdown of lncRNA ZFHX4-AS1 could inhibit the proliferation, invasion and migration of OvCa cells. Conclusions The results suggested that lncRNA ZFHX4-AS1 is a novel prognostic biomarker associated with cell proliferation, metabolism, infiltration, and distribution of tumor-infiltrating immune cells in OvCa, indicating that lncRNA ZFHX4-AS1 can be used as a potential therapeutic target for OvCa in the future.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yiwen Wang
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fusheng Sun
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Xu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhaocong Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lijie Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Ge Lou,
| |
Collapse
|
12
|
miR-218-5p/RUNX2 Axis Positively Regulates Proliferation and Is Associated with Poor Prognosis in Cervical Cancer. Int J Mol Sci 2022; 23:ijms23136993. [PMID: 35805994 PMCID: PMC9267020 DOI: 10.3390/ijms23136993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
The overexpression of miR-218-5p in cervical cancer (CC) cell lines decreases migration, invasion and proliferation. The objective was to identify target genes of miR-218-5p and the signaling pathways and cellular processes that they regulate. The relationship between the expression of miR-218-5p and RUNX2 and overall survival in CC as well as the effect of the exogenous overexpression of miR-218-5p on the level of RUNX2 were analyzed. The target gene prediction of miR-218-5p was performed in TargetScan, miRTarBase and miRDB. Predicted target genes were subjected to gene ontology (GO) and pathway enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes (KEGG). The miR-218-5p mimetic was transfected into C-33A and CaSki cells, and the miR-218-5p and RUNX2 levels were determined by RT–qPCR. Of the 118 predicted targets for miR-218-5p, 86 are involved in protein binding, and 10, including RUNX2, are involved in the upregulation of proliferation. Low miR-218-5p expression and a high level of RUNX2 are related to poor prognosis in CC. miR-218-5p overexpression is related to decreased RUNX2 expression in C-33A and CaSki cells. miR-218-5p may regulate RUNX2, and both molecules may be prognostic markers in CC.
Collapse
|