1
|
Zhu J, Liu F, Ye T, Li Q, Liu H, Liu S, Zhang T, Guo D, Zhu J, Lou B. Genome-wide association study and transcriptomic analysis reveal the crucial role of sting1 in resistance to visceral white-nodules disease in Larimichthys polyactis. Front Immunol 2025; 16:1562307. [PMID: 40356894 PMCID: PMC12066304 DOI: 10.3389/fimmu.2025.1562307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Larimichthys polyactis is a promising marine fishery species, but visceral white-nodules disease (VWND) caused by Pseudomonas plecoglossicida causes significant losses. However, genetic resistance mechanisms to VWND remain elusive in this species. Methods This study combined genome-wide association study (GWAS) and transcriptome analysis to unravel resistance loci and transcriptional regulation in L. polyactis. Results As a result, GWAS on 946 infected fish genotyped by 100 K lipid chips identified 22 suggestive significantly associated single-nucleotide polymorphisms (SNPs), annotated 60 candidate genes, where DNA-sensing pathway were enriched. RNA-seq on liver tissues of resistant, sensitive, and control groups found immune-related pathways enriched in the comparisons of RL vs CL and RL vs SL, and autophagy-related pathways enriched in the comparisons of SL vs CL and RL vs SL. Then, the integration of GWAS and transcriptome analysis identified seven key genes associated with resistance to VWND. Among the genes, the expression levels of mRNA for genes related to the cyclic GMP-AMP synthase-stimulator of interferon genes (STING) signaling pathway, as well as the protein levels of STING1, were significantly upregulated in RL. Collectively, integrating KEGG pathway analysis, gene and protein expression analysis revealed that the importance of STING1 for VWND resistance. Discussion These findings deepen the available knowledge on molecular mechanisms of host genetic resistance to VWND and provide an important foundation for the selection and breeding of VWND-resistant L. polyactis.
Collapse
Affiliation(s)
- Jiajie Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Feng Liu
- State Key Laboratory for Quality and Safety of Agro-Products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ting Ye
- State Key Laboratory for Quality and Safety of Agro-Products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qian Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Haowen Liu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Sifang Liu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tianle Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Dandan Guo
- State Key Laboratory for Quality and Safety of Agro-Products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Bao Lou
- State Key Laboratory for Quality and Safety of Agro-Products / Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
2
|
Ju Y, Xiao W, Mathis BJ, Shi Y. KLF4: a multifunctional nexus connecting tumor progression and immune regulation. Front Immunol 2025; 16:1514780. [PMID: 39995670 PMCID: PMC11848521 DOI: 10.3389/fimmu.2025.1514780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Krüppel-like factors (KLFs) regulate various biological processes such as cell proliferation, migration, invasion, and differentiation as gene transcription factors. Signaling pathways which mediated by KLF4 and KLF4 have a sophisticated role in tumors due to multiple factors, including the types or stage of tumors. KLF4 plays a promoter role in tumorigenesis and development, or tumor suppressor as a context-dependent anti- and pro-inflammatory factor. KLF4 over-expression increases CD8+T cell differentiation and enhances the antitumor immunity. This review aims to provide information about the relationship of KLF4 in immunity with tumors and to guide the future study.
Collapse
Affiliation(s)
- Yunjie Ju
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bryan James Mathis
- Clinical Research Manuscript Elevation Service, University of Tsukuba Institute of Medicine, Tsukuba, Japan
| | - Ying Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Vandenhoeck J, Ibrahim J, De Meulenaere N, Peeters D, Raskin J, Hendriks JMH, Van Schil P, van Meerbeeck J, Van Camp G, Op de Beeck K. Genome-wide DNA methylation analysis reveals a unique methylation pattern for pleural mesothelioma compared to healthy pleura and other lung diseases. Clin Epigenetics 2024; 16:176. [PMID: 39627815 PMCID: PMC11616176 DOI: 10.1186/s13148-024-01790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Pleural mesothelioma (PM) is a rare and aggressive cancer type, typically diagnosed at advanced stages. Distinguishing PM from other lung diseases is often challenging. There is an urgent need for biomarkers that can enable early detection. Interest in the field of epigenetics has increased, particularly in the context of tumour development and biomarker discovery. This study aims to identify specific changes in DNA methylation from healthy pleural tissue to PM and to compare these methylation patterns with those found in other lung diseases. RESULTS EPIC methylation array data (850 K) were generated for 11 PM and 29 healthy pleura in-house collected samples. This is the first time such a large dataset of healthy pleura samples has been generated. Additional EPIC methylation array data (850 K) for pleural mesothelioma and other lung-related diseases were downloaded from public databases. We conducted pairwise differential methylation analyses across all tissue types, which facilitated the identification of significantly differentially methylated CpG sites. Extensive differential methylation between PM and healthy pleura was observed, identifying 81,968 differentially methylated CpG sites across all genomic regions. Among these, five CpG sites located within four genes (MIR21, RNF39, SPEN and C1orf101) exhibited the most significant and pronounced methylation differences between PM and healthy pleura. Moreover, our analysis delineated distinct methylation patterns specific to PM subtypes. Finally, the methylation profiles of PM were distinctly different from those of other lung cancers, enabling accurate differentiation. CONCLUSIONS DNA methylation analyses provide a robust method for distinguishing PM from healthy pleural tissues, and specific methylation patterns exist within PM subtypes. These methylation differences underscore their importance in understanding disease progression and may serve as viable biomarkers or therapeutic targets. Moreover, differential methylation patterns between PM and other lung cancers highlights its diagnostic potential. These findings necessitate further translational studies to explore their clinical applications.
Collapse
Affiliation(s)
- Janah Vandenhoeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Joe Ibrahim
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Nele De Meulenaere
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Dieter Peeters
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Jo Raskin
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jeroen M H Hendriks
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Paul Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Jan van Meerbeeck
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Guy Van Camp
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Ken Op de Beeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium.
| |
Collapse
|
4
|
Jan A, Mothana RA, Kaimori JY, Muhammad T, Khan M, Ali SS, Rahman N, Alanzi AR. Identification of genetic risk variants for Type-2 Diabetes mellitus in Pakistani Pashtun population: A case-control association study. Pak J Med Sci 2024; 40:2336-2343. [PMID: 39554687 PMCID: PMC11568737 DOI: 10.12669/pjms.40.10.10292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 11/19/2024] Open
Abstract
Background and Objective Pakistan, a South Asian developing country, is experiencing a rapid increase in number of diabetes cases. High prevalence ratio of diabetes in Pakistani population and lack of genetic research studies prompted us to design this study. This present study investigated Pakistani Pashtun population for (known and novel SNPs) and its possible correlation with Type-2 Diabetes Mellitus (T2DM). Methods This two stage (discovery & validation stage), case-control association study included one thousand individuals (Patients with T2DM=500 & controls=500) from eight districts of Khyber Pakhtunkhwa Pakistan. The study duration/period was from March 2018 to January 2020. In the first stage (the discovery stage) the target population was screened for known and novel T2DM-associated genetic markers. In the validation stage, identified variants were confirmed for T2DM association using MassARRAY genotyping and association analysis. Results Exome sequencing detected eleven known and four novel/new genetic markers in the study population. Novel variants were preferred over the known for follow-up analysis/validation. Among the identified variants strong associations were confirmed for the following variants; rs1781133/ANKRD65 (OR=2.10, 95%Cl=1.06-3.08, P=0.003) rs2274791/TTLL10 (OR=1.97, 95%Cl=1.36-2.62, P=0.025), rs71628928/RNF223 (OR=1.82, 95%Cl=0.97-1.92, P=0.041), and rs609805/SCNN1D (OR=2.21, 95%Cl=1.92-3.09, P=0.001) with T2DM; other reported variants showed no noticeable association (having P>0.05) with T2DM. Conclusion This study reports new genetic risk variants for T2DM in Pashtun population providing valuable insights into the genetic basis of T2DM in this group.
Collapse
Affiliation(s)
- Asif Jan
- Asif Jan, District Headquarter Hospital (DHQH) Charsadda, Charsadda 24430, Pakistan. Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Ramzi A. Mothana
- Ramzi A. Mothana, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 1151, Saudi Arabia
| | - Jun-Ya Kaimori
- Jun-Ya Kaimori, Department of Nephrology, Osaka University Graduate School of Medicine, Suita, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Institute of Medical Science, University of Toronto, Toronto 43964, ON, Canada
| | - Tahir Muhammad
- Tahir Muhammad, Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health, Research Institute, Centre for Addiction & Mental Health, Toronto 43964, ON, Canada
| | - Mehtab Khan
- Mehtab Khan, Department of Biology, Faculty of Science, University of Moncton, Canada
| | - Syed Shaukat Ali
- Syed Shaukat Ali, Department of Pharmacy, University of Malakand, Pakistan
| | - Naveed Rahman
- Naveed Rahman, Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Abdullah R. Alanzi
- Abdullah R. Alanzi, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 1151, Saudi Arabia
| |
Collapse
|
5
|
Li Z, Yan G, Yang M, Liu X, Lian Y, Sun M, Pan W. CBLC promotes the development of colorectal cancer by promoting ABI1 degradation to activate the ERK signaling pathway. Transl Oncol 2024; 45:101992. [PMID: 38743987 PMCID: PMC11109901 DOI: 10.1016/j.tranon.2024.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
CBLC (CBL proto-oncogene C) is an E3 ubiquitin protein ligase that plays a key role in cancers. However, the function and mechanism of CBLC in colorectal cancer (CRC) has not been fully elucidated. The aim of this study was to investigate the function of CBLC in CRC and its underlying molecular mechanism. High CBLC levels were certified in tumor tissues of CRC patients, and its expression was positively associated with TNM stage. Next, we explored the role of CBLC in CRC using gain or loss of function. For biological function analysis, CCK-8 cell proliferation, colony formation, flow cytometry, scratch, and transwell assays collectively suggested that CBLC overexpression promoted cell proliferation, cell cycle progression, migration and invasion. As observed, CBLC knockdown exhibited exactly opposite effects, resulting in impaired tumorigenicity in vitro. Xenograft studies displayed that CBLC overexpression accelerated tumor growth and promoted tumor metastasis to the lung, while the inhibitory effects of CBLC knockdown on tumorigenicity and metastasis ability of CRC cells was also confirmed. Furthermore, the molecular mechanism of CBLC in CRC was explored. CBLC induced the activation of ERK signaling pathway, further leading to its pro-tumor role. Notably, CBLC decreased ABI1 (Abelson interactor protein-1, a candidate tumor suppressor) protein levels through its ubiquitin ligase activity, while ABI1 upregulation abolished the effects of CBLC on the tumorigenesis of CRC. Taken together, these results demonstrate that CBLC acts as a tumor promoter in CRC through triggering the ubiquitination and degradation of ABI1 and activating the ERK signaling pathway. CBLC may be a potential novel target for CRC.
Collapse
Affiliation(s)
- Zhan Li
- Department of General Surgery, Liaoyang City Central Hospital, Liaoyang, Liaoning Province, China
| | - Guanyu Yan
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Meiqi Yang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xingwu Liu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuan Lian
- General Hospital of Fuxin Mining Industry Group of Liaoning Health Industry Group, Fuxin, Liaoning Province, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Wenjun Pan
- Department of General Surgery, Liaoyang City Central Hospital, Liaoyang, Liaoning Province, China.
| |
Collapse
|
6
|
Jamal A. E3 Ubiquitin Ligases and Their Therapeutic Applications in Cancers: Narrative Review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1984-S1986. [PMID: 39346323 PMCID: PMC11426868 DOI: 10.4103/jpbs.jpbs_134_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 10/01/2024] Open
Abstract
E3 ubiquitin ligases are a class of enzymes, essential for maintaining the equilibrium of cells by binding ubiquitin molecules to substrates to mark them for destruction. Since many cancer-related proteins, including both oncogenic and tumor-suppressive ones, are controlled by the ubiquitin-proteasome system, E3 ligases have drawn a great deal of interest as potential targets for the creation of anti-cancer drugs. This is because E3 ligases function as modules that select the substrates that are intended for degradation, giving them the ability to particularly affect proteins that are connected to cancer. Their molecular properties and the ways in which they work serve as the basis for these distinctions. Investment in the creation of bioactive substances that can target E3 ligases is essential given the crucial roles they play in cancer. These substances have the potential to be powerful cancer-fighting tools. In this review, we explore the crucial roles that E3 ligases play in the biology of cancer. We also examine the current bioactive substances that have been created to target different E3 ligases, emphasizing their potential as candidates for treating the cancers.
Collapse
Affiliation(s)
- Azfar Jamal
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Majmaah, Riyadh, Saudi Arabia
- Health and Basic Science Research Centre, Majmaah University, Majmaah, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Alganmi N, Bashanfar A, Alotaibi R, Banjar H, Karim S, Mirza Z, Abusamra H, Al-Attas M, Turkistany S, Abuzenadah A. Uncovering hidden genetic risk factors for breast and ovarian cancers in BRCA-negative women: a machine learning approach in the Saudi population. PeerJ Comput Sci 2024; 10:e1942. [PMID: 38660159 PMCID: PMC11042021 DOI: 10.7717/peerj-cs.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
Breast and ovarian cancers are prevalent worldwide, with genetic factors such as BRCA1 and BRCA2 mutations playing a significant role. However, not all patients carry these mutations, making it challenging to identify risk factors. Researchers have turned to whole exome sequencing (WES) as a tool to identify genetic risk factors in BRCA-negative women. WES allows the sequencing of all protein-coding regions of an individual's genome, providing a comprehensive analysis that surpasses traditional gene-by-gene sequencing methods. This technology offers efficiency, cost-effectiveness and the potential to identify new genetic variants contributing to the susceptibility to the diseases. Interpreting WES data for disease-causing variants is challenging due to its complex nature. Machine learning techniques can uncover hidden genetic-variant patterns associated with cancer susceptibility. In this study, we used the extreme gradient boosting (XGBoost) and random forest (RF) algorithms to identify BRCA-related cancer high-risk genes specifically in the Saudi population. The experimental results exposed that the RF method scored superior performance with an accuracy of 88.16% and an area under the receiver-operator characteristic curve of 0.95. Using bioinformatics analysis tools, we explored the top features of the high-accuracy machine learning model that we built to enhance our knowledge of genetic interactions and find complex genetic patterns connected to the development of BRCA-related cancers. We were able to identify the significance of HLA gene variations in these WES datasets for BRCA-related patients. We find that immune response mechanisms play a major role in the development of BRCA-related cancer. It specifically highlights genes associated with antigen processing and presentation, such as HLA-B, HLA-A and HLA-DRB1 and their possible effects on tumour progression and immune evasion. In summary, by utilizing machine learning approaches, we have the potential to aid in the development of precision medicine approaches for early detection and personalized treatment strategies.
Collapse
Affiliation(s)
- Nofe Alganmi
- Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa Bashanfar
- Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Alotaibi
- Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haneen Banjar
- Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zeenat Mirza
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba Abusamra
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal Al-Attas
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shereen Turkistany
- Center of Innovation Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Fisher SA, Patrick K, Hoang T, Marcq E, Behrouzfar K, Young S, Miller TJ, Robinson BWS, Bueno R, Nowak AK, Lesterhuis WJ, Morahan G, Lake RA. The MexTAg collaborative cross: host genetics affects asbestos related disease latency, but has little influence once tumours develop. FRONTIERS IN TOXICOLOGY 2024; 6:1373003. [PMID: 38694815 PMCID: PMC11061428 DOI: 10.3389/ftox.2024.1373003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Objectives: This study combines two innovative mouse models in a major gene discovery project to assess the influence of host genetics on asbestos related disease (ARD). Conventional genetics studies provided evidence that some susceptibility to mesothelioma is genetic. However, the identification of host modifier genes, the roles they may play, and whether they contribute to disease susceptibility remain unknown. Here we report a study designed to rapidly identify genes associated with mesothelioma susceptibility by combining the Collaborative Cross (CC) resource with the well-characterised MexTAg mesothelioma mouse model. Methods: The CC is a powerful mouse resource that harnesses over 90% of common genetic variation in the mouse species, allowing rapid identification of genes mediating complex traits. MexTAg mice rapidly, uniformly, and predictably develop mesothelioma, but only after asbestos exposure. To assess the influence of host genetics on ARD, we crossed 72 genetically distinct CC mouse strains with MexTAg mice and exposed the resulting CC-MexTAg (CCMT) progeny to asbestos and monitored them for traits including overall survival, the time to ARD onset (latency), the time between ARD onset and euthanasia (disease progression) and ascites volume. We identified phenotype-specific modifier genes associated with these traits and we validated the role of human orthologues in asbestos-induced carcinogenesis using human mesothelioma datasets. Results: We generated 72 genetically distinct CCMT strains and exposed their progeny (2,562 in total) to asbestos. Reflecting the genetic diversity of the CC, there was considerable variation in overall survival and disease latency. Surprisingly, however, there was no variation in disease progression, demonstrating that host genetic factors do have a significant influence during disease latency but have a limited role once disease is established. Quantitative trait loci (QTL) affecting ARD survival/latency were identified on chromosomes 6, 12 and X. Of the 97-protein coding candidate modifier genes that spanned these QTL, eight genes (CPED1, ORS1, NDUFA1, HS1BP3, IL13RA1, LSM8, TES and TSPAN12) were found to significantly affect outcome in both CCMT and human mesothelioma datasets. Conclusion: Host genetic factors affect susceptibility to development of asbestos associated disease. However, following mesothelioma establishment, genetic variation in molecular or immunological mechanisms did not affect disease progression. Identification of multiple candidate modifier genes and their human homologues with known associations in other advanced stage or metastatic cancers highlights the complexity of ARD and may provide a pathway to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Scott A. Fisher
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Kimberley Patrick
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Tracy Hoang
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Elly Marcq
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kiarash Behrouzfar
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Sylvia Young
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Timothy J. Miller
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Bruce W. S. Robinson
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Raphael Bueno
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | | | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
10
|
George M, Masamba P, Iwalokun BA, Kappo AP. Zooming into the structure-function of RING finger proteins for anti-cancer therapeutic applications. Am J Cancer Res 2023; 13:2773-2789. [PMID: 37559981 PMCID: PMC10408477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023] Open
Abstract
Cancer is one of the most common and widely diagnosed diseases worldwide. With an increase in prevalence and incidence, many studies in cancer biology have been looking at the role pro-cancer proteins play. One of these proteins is the Really Interesting New Gene (RING), which has been studied extensively due to its structure and functions such as apoptosis, neddylation, and its role in ubiquitination. The RING domain is a cysteine-rich domain known to bind Cysteine and Histidine residues. It also binds two zinc ions that help stabilize the protein in various patterns, often with a 'cross-brace' topology. Different RING finger proteins have been studied and found to have suitable targets for developing anti-cancer therapeutics. These identified candidate proteins include Parkin, COP1, MDM2, BARD1, BRCA-1, PIRH2, c-CBL, SIAH1, RBX1 and RNF8. Inhibiting these candidate proteins provides opportunities for shutting down pathways associated with tumour development and metastasis.
Collapse
Affiliation(s)
- Mary George
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| | - Bamidele Abiodun Iwalokun
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research (NIMR)Yaba, Lagos, Nigeria
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| |
Collapse
|
11
|
Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy. Semin Cancer Biol 2022; 87:84-97. [PMID: 36371028 DOI: 10.1016/j.semcancer.2022.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Evidence has revealed that transcription factors play essential roles in regulation of multiple cellular processes, including cell proliferation, metastasis, EMT, cancer stem cells and chemoresistance. Dysregulated expression levels of transcription factors contribute to tumorigenesis and malignant progression. The expression of transcription factors is tightly governed by several signaling pathways, noncoding RNAs and E3 ubiquitin ligases. Cancer stem cells (CSCs) have been validated in regulation of tumor metastasis, reoccurrence and chemoresistance in human cancer. Transcription factors have been verified to participate in regulation of CSC formation, including Oct4, SOX2, KLF4, c-Myc, Nanog, GATA, SALL4, Bmi-1, OLIG2, POU3F2 and FOX proteins. In this review article, we will describe the critical role of CSC-related transcription factors. We will further discuss which E3 ligases regulate the degradation of these CSC-related transcription factors and their underlying mechanisms. We also mentioned the functions and mechanisms of EMT-associated transcription factors such as ZEB1, ZEB2, Snail, Slug, Twist1 and Twist2. Furthermore, we highlight the therapeutic potential via targeting E3 ubiquitin ligases for modulation of these transcription factors.
Collapse
|
12
|
Gao X, Zhang W, Jia Y, Xu H, Zhu Y, Pei X. Identification of a prognosis-related ceRNA network in cholangiocarcinoma and potentially therapeutic molecules using a bioinformatic approach and molecular docking. Sci Rep 2022; 12:16247. [PMID: 36171401 PMCID: PMC9519560 DOI: 10.1038/s41598-022-20362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly malignant disease with a poor prognosis, and mechanisms of initiation and development are not well characterized. It is long noncoding RNAs (lncRNAs) acting as miRNA decoys to regulate cancer-related RNAs in competing endogenous RNA (ceRNA) networks that suggest a possible molecular mechanism in CCA. The current study aims to find potential prognosis biomarkers and small molecule therapeutic targets based on the construction of a CCA prognosis-related ceRNA network. A transcriptome dataset for CCA was downloaded from the TCGA database. Differentially expressed lncRNAs (DElncRNAs), DEmiRNAs and DEmRNAs were identified based on the differential expression and a DEceRNA network was constructed using predicted miRNA-lncRNA and miRNA-mRNA interactions. Heat maps, PCA analysis, and Pathway enrichment analysis and GO enrichment analysis were conducted. The prognostic risk model and molecular docking were constructed based on identified key ceRNA networks. A DElncRNA-miRNA-mRNAs network consisting of 434 lncRNA-miRNA pairs and 284 miRNA-mRNA pairs with 200 lncRNAs, 21 miRNAs, and 245 mRNAs was constructed. There were three lncRNAs (AC090772.1, LINC00519, and THAP7-AS1) and their downstream mRNAs (MECOM, MBNL3, RCN2) screened out as prognostic factors in CAA. Three key networks (LINC00519/ hsa-mir-22/ MECOM, THAP7-AS1/hsa-mir-155/MBNL3, and THAP7-AS1/hsa-mir-155/RCN2) were identified based on binding sites prediction and survival analysis. A prognostic risk model was established with a good predictive ability (AUC = 0.66–0.83). Four anticancer small molecules, MECOM and 17-alpha-estradiol (−7.1 kcal/mol), RCN2 and emodin (−8.3 kcal/mol), RCN2 and alpha-tocopherol (−5.6 kcal/mol), and MBNL3 and 17-beta-estradiol (−7.1 kcal/mol) were identified. Based on the DEceRNA network and Kaplan–Meier survival analysis, we identified three important ceRNA networks associated with the poor prognosis of CCA. Four anti-cancer small molecules were screened out by computer-assisted drug screening as potential small molecules for the treatment of CCA. This study provides theoretical support for the development of ceRNA network-based drugs to improve the prognosis of CCA.
Collapse
Affiliation(s)
- Xiaoling Gao
- The Medical Laboratory Center, Hainan General Hospital, Haikou, 570311, China.
| | - Wenhao Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yanjuan Jia
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Hui Xu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yuchen Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Xiong Pei
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
13
|
Deguelin Attenuates Non-Small-Cell Lung Cancer Cell Metastasis by Upregulating PTEN/KLF4/EMT Signaling Pathway. DISEASE MARKERS 2022; 2022:4090346. [PMID: 35637651 PMCID: PMC9148257 DOI: 10.1155/2022/4090346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer and a major cause of cancer mortality worldwide. Deguelin plays a vital inhibitory role in NSCLC initiation and development. However, the downstream mechanism of deguelin-suppressed metastasis of NSCLC cells is still not completely understood. Interestingly, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and Krüppel-like factor 4 (KLF4) also contribute to inhibition of metastasis in NSCLC cells. Here, we demonstrated that deguelin significantly upregulated PTEN and KLF4 expressions and PTEN positively upregulated KLF4 expression in NSCLC cells including A549 and PC9 cells. Moreover, overexpressions of PTEN and KLF4 inhibited the migration and invasion of NSCLC cells, an effect similar to that of deguelin. Furthermore, overexpressions of PTEN and KLF4 could suppress the epithelial-mesenchymal transition (EMT), an effect also similar to that of deguelin. Additionally, deguelin displayed a significant antitumor ability by upregulating PTEN and KLF4 expressions in mice model with NSCLC cells. Together, these results indicated that deguelin could be a potential therapeutic agent through upregulating PTEN and KLF4 expressions for NSCLC therapy.
Collapse
|