1
|
Zhang N, Sun L, Zhou S, Ji C, Cui T, Chu Q, Ye J, Liang S, Ma K, Liu Y, Li X, Guo X, Zhang W, Gu X, Cheng C, Zha Q, Tao S, Zhang Y, Chu J, Wu C, Zhang Y, Wang J, Liu Y, Liu L. Cholangiocarcinoma PDHA1 succinylation suppresses macrophage antigen presentation via alpha-ketoglutaric acid accumulation. Nat Commun 2025; 16:3177. [PMID: 40180922 PMCID: PMC11968997 DOI: 10.1038/s41467-025-58429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Gemcitabine combined with cisplatin is the first-line chemotherapy for advanced cholangiocarcinoma, but drug resistance remains a challenge, leading to unsatisfactory therapeutic effect. Here, we elucidate the possibility of chemotherapy regimens sensitized by inhibiting succinylation in patients with cholangiocarcinoma from the perspective of post-translational modification. Our omics analysis reveals that succinylation of PDHA1 lysine 83, a key enzyme in the tricarboxylic acid cycle, alters PDH enzyme activity, modulates metabolic flux, and leads to alpha-ketoglutaric acid accumulation in the tumor microenvironment. This process activates the OXGR1 receptor on macrophages, triggering MAPK signaling and inhibiting MHC-II antigen presentation, which promotes immune escape and tumor progression. Moreover, we show that inhibiting PDHA1 succinylation with CPI-613 enhances the efficacy of gemcitabine and cisplatin. Targeting PDHA1 succinylation may be a promising strategy to improve treatment outcomes in cholangiocarcinoma and warrants further clinical exploration.
Collapse
Affiliation(s)
- Ning Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shuo Zhou
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Jiareng Ye
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shuhang Liang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kun Ma
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yufeng Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Xianying Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Hepatobiliary Surgery Department, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Weizhi Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Xuetian Gu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Qingrui Zha
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shengwei Tao
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yunguang Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Junhui Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yuchen Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China.
| | - Lianxin Liu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Hagen JT, Montgomery MM, Biagioni EM, Krassovskaia P, Jevtovic F, Shookster D, Sharma U, Tung K, Broskey NT, May L, Huang H, Brault JJ, Neufer PD, Cabot MC, Fisher-Wellman KH. Intrinsic adaptations in OXPHOS power output and reduced tumorigenicity characterize doxorubicin resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148915. [PMID: 36058252 PMCID: PMC9661894 DOI: 10.1016/j.bbabio.2022.148915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Although the development of chemoresistance is multifactorial, active chemotherapeutic efflux driven by upregulations in ATP binding cassette (ABC) transporters are commonplace. Chemotherapeutic efflux pumps, like ABCB1, couple drug efflux to ATP hydrolysis and thus potentially elevate cellular demand for ATP resynthesis. Elevations in both mitochondrial content and cellular respiration are common phenotypes accompanying many models of cancer cell chemoresistance, including those dependent on ABCB1. The present study set out to characterize potential mitochondrial remodeling commensurate with ABCB1-dependent chemoresistance, as well as investigate the impact of ABCB1 activity on mitochondrial respiratory kinetics. To do this, comprehensive bioenergetic phenotyping was performed across ABCB1-dependent chemoresistant cell models and compared to chemosensitive controls. In doxorubicin (DOX) resistant ovarian cancer cells, the combination of both increased mitochondrial content and enhanced respiratory complex I (CI) boosted intrinsic oxidative phosphorylation (OXPHOS) power output. With respect to ABCB1, acute ABCB1 inhibition partially normalized intact basal mitochondrial respiration between chemosensitive and chemoresistant cells, suggesting that active ABCB1 contributes to mitochondrial remodeling in favor of enhanced OXPHOS. Interestingly, while enhanced OXPHOS power output supported ABCB1 drug efflux when DOX was present, in the absence of chemotherapeutic stress, enhanced OXPHOS power output was associated with reduced tumorigenicity.
Collapse
Affiliation(s)
- James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - McLane M Montgomery
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Ericka M Biagioni
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States
| | - Polina Krassovskaia
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States
| | - Filip Jevtovic
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States
| | - Daniel Shookster
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States
| | - Uma Sharma
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Kang Tung
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Nickolas T Broskey
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Linda May
- School of Dental Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Hu Huang
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States
| | - Jeffrey J Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - P Darrell Neufer
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States.
| |
Collapse
|
7
|
Deng L, Jiang A, Zeng H, Peng X, Song L. Comprehensive analyses of PDHA1 that serves as a predictive biomarker for immunotherapy response in cancer. Front Pharmacol 2022; 13:947372. [PMID: 36003495 PMCID: PMC9393251 DOI: 10.3389/fphar.2022.947372] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023] Open
Abstract
Recent studies have proposed that pyruvate dehydrogenase E1 component subunit alpha (PDHA1), a cuproptosis-key gene, is crucial to the glucose metabolism reprogram of tumor cells. However, the functional roles and regulated mechanisms of PDHA1 in multiple cancers are largely unknown. The Cancer Genome Atlas (TCGA), GEPIA2, and cBioPortal databases were utilized to elucidate the function of PDHA1 in 33 tumor types. We found that PDHA1 was aberrantly expressed in most cancer types. Lung adenocarcinoma (LUAD) patients with high PDHA1 levels were significantly correlated with poor prognosis of overall survival (OS) and first progression (FP). Kidney renal clear cell carcinoma (KIRC) patients with low PDHA1 levels displayed poor OS and disease-free survival (DFS). However, for stomach adenocarcinoma (STAD), the downregulated PDHA1 expression predicted a good prognosis in patients. Moreover, we evaluated the mutation diversity of PDHA1 in cancers and their association with prognosis. We also analyzed the protein phosphorylation and DNA methylation of PDHA1 in various tumors. The PDHA1 expression was negatively correlated with tumor-infiltrating immune cells, such as myeloid dendritic cells (DCs), B cells, and T cells in pan-cancers. Mechanically, we used single-cell sequencing to discover that the PDHA1 expression had a close link with several cancer-associated signaling pathways, such as DNA damage, cell invasion, and angiogenesis. At last, we conducted a co-expressed enrichment analysis and showed that aberrantly expressed PDHA1 participated in the regulation of mitochondrial signaling pathways, including oxidative phosphorylation, cellular respiration, and electron transfer activity. In summary, PDHA1 could be a prognostic and immune-associated biomarker in multiple cancers.
Collapse
Affiliation(s)
- Langmei Deng
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, HN, China
| | - Anqi Jiang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, HN, China
| | - Hanqing Zeng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, HN, China
| | - Xiaoji Peng
- Department of Pharmacy, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, HN, China
| | - Liying Song
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, HN, China
- *Correspondence: Liying Song,
| |
Collapse
|