1
|
Casetti R, Ciccosanti F, Lamsira HK, Pinnetti C, Mazzotta V, Ciolfi S, Sacchi A, Amendola A, Ippolito G, Piacentini M, Nardacci R. Autophagy is influenced by vitamin D 3 level in people with HIV-1. Biol Direct 2025; 20:69. [PMID: 40514685 DOI: 10.1186/s13062-025-00660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Accepted: 05/31/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND Autophagy is the primary catabolic process responsible for degrading intracellular components and potentially harmful cytosolic entities by delivering them to lysosomes. Notably, this mechanism is crucial for controlling intracellular pathogens, with significant implications for both innate and adaptive immunity. In the context of HIV-1 infection, emerging evidence suggests that autophagy contributes to immune responses against the virus. Various compounds can modulate autophagy, among which vitamin D₃ is particularly effective due to its ability to prevent inflammation and slow HIV-1 disease progression. Indeed, vitamin D₃ contributes to regulating both innate and adaptive immunity, thereby modulating antiviral and antibacterial inflammatory responses. Importantly, vitamin D₃ deficiency is highly prevalent among people with HIV (PWH) and has been associated with an increased risk of severe disease progression. RESULTS In this study, we investigated the relationship between serum vitamin D₃ levels and the expression of autophagy markers in peripheral blood mononuclear cells from different categories of PWH: PWH under antiretroviral therapy (ART) with either normal vitamin D₃ levels or hypovitaminosis, and treatment-naïve PWH with either normal vitamin D₃ levels or hypovitaminosis. Our results show that low vitamin D₃ blood levels is associated with lower expression of the main factors involved in the autophagy mechanism, particularly in treatment-naïve PWH. CONCLUSIONS Our findings suggest that normal blood level of vitamin D₃ may play a crucial role in promoting autophagy in PWH. The observed differences in autophagy-related protein expression between ART-treated and untreated individuals underscore the intricate relationship between vitamin D₃ levels, ART exposure, and autophagic regulation. This is a preliminary exploration of the effects of vitamin D₃ on autophagy in PWH. Further studies are needed to deepen and explore the interplay between vitamin D₃ and autophagy in greater depth. A better understanding of these mechanisms could help to develop novel therapeutic strategies aimed at mitigating immune depletion and chronic inflammation, ultimately improving clinical outcomes for individuals living with HIV.
Collapse
Affiliation(s)
- Rita Casetti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'Lazzaro Spallanzani' - IRCCS, Rome, 00149, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'Lazzaro Spallanzani' - IRCCS, Rome, 00149, Italy
| | - Harpreet Kaur Lamsira
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, Rome, 00131, Italy
| | - Carmela Pinnetti
- Clinical and Research Department, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, 00149, Italy
| | - Valentina Mazzotta
- Clinical and Research Department, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, 00149, Italy
| | - Serena Ciolfi
- Department of Science, University of Roma Tre, Rome, 00146, Italy
| | | | - Alessandra Amendola
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases 'Lazzaro Spallanzani'- IRCCS, Rome, 00149, Italy
| | - Giuseppe Ippolito
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, Rome, 00131, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'Lazzaro Spallanzani' - IRCCS, Rome, 00149, Italy
- Department of Biology, University of Rome 'Tor Vergata', Rome, 00133, Italy
| | - Roberta Nardacci
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, Rome, 00131, Italy.
| |
Collapse
|
2
|
Henke W, Waisner H, Arachchige SP, Kalamvoki M, Stephens E. The envelope proteins from SARS-CoV-2 and SARS-CoV potently reduce the infectivity of human immunodeficiency virus type 1 (HIV-1). Retrovirology 2022; 19:25. [PMID: 36403071 PMCID: PMC9675205 DOI: 10.1186/s12977-022-00611-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Viroporins are virally encoded ion channels involved in virus assembly and release. Human immunodeficiency virus type 1 (HIV-1) and influenza A virus encode for viroporins. The human coronavirus SARS-CoV-2 encodes for at least two viroporins, a small 75 amino acid transmembrane protein known as the envelope (E) protein and a larger 275 amino acid protein known as Orf3a. Here, we compared the replication of HIV-1 in the presence of four different β-coronavirus E proteins. RESULTS We observed that the SARS-CoV-2 and SARS-CoV E proteins reduced the release of infectious HIV-1 yields by approximately 100-fold while MERS-CoV or HCoV-OC43 E proteins restricted HIV-1 infectivity to a lesser extent. Mechanistically, neither reverse transcription nor mRNA synthesis was involved in the restriction. We also show that all four E proteins caused phosphorylation of eIF2-α at similar levels and that lipidation of LC3-I could not account for the differences in restriction. However, the level of caspase 3 activity in transfected cells correlated with HIV-1 restriction in cells. Finally, we show that unlike the Vpu protein of HIV-1, the four E proteins did not significantly down-regulate bone marrow stromal cell antigen 2 (BST-2). CONCLUSIONS The results of this study indicate that while viroporins from homologous viruses can enhance virus release, we show that a viroporin from a heterologous virus can suppress HIV-1 protein synthesis and release of infectious virus.
Collapse
Affiliation(s)
- Wyatt Henke
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Hope Waisner
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Sachith Polpitiya Arachchige
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Edward Stephens
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| |
Collapse
|
3
|
Henke W, Waisner H, Arachchige SP, Kalamvoki M, Stephens E. The Envelope Proteins from SARS-CoV-2 and SARS-CoV Potently Reduce the Infectivity of Human Immunodeficiency Virus type 1 (HIV-1). RESEARCH SQUARE 2022:rs.3.rs-2175808. [PMID: 36324807 PMCID: PMC9628187 DOI: 10.21203/rs.3.rs-2175808/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Viroporins are virally encoded ion channels involved in virus assembly and release. Human immunodeficiency virus type 1 (HIV-1) and influenza A virus encode for viroporins. The human coronavirus SARS-CoV-2 encodes for at least two viroporins, a small 75 amino acid transmembrane protein known as the envelope (E) protein and a larger 275 amino acid protein known as Orf3a. Here, we compared the replication of HIV-1 in the presence of four different β-coronavirus E proteins. Results We observed that the SARS-CoV-2 and SARS-CoV E proteins reduced the release of infectious HIV-1 yields by approximately 100-fold while MERS-CoV or HCoV-OC43 E proteins restricted HIV-1 infectivity to a lesser extent. Mechanistically, neither reverse transcription nor mRNA synthesis was involved in the restriction. We also show that all four E proteins caused phosphorylation of eIF2-α at similar levels and that lipidation of LC3-I could not account for the differences in restriction. However, the level of caspase 3 activity in transfected cells correlated with HIV-1 restriction in cells. Finally, we show that unlike the Vpu protein of HIV-1, the four E proteins did not significantly down-regulate bone marrow stromal cell antigen 2 (BST-2). Conclusions The results of this study indicate that while viroporins from homologous viruses can enhance virus release, we show that a viroporin from a heterologous virus can suppress HIV-1 protein synthesis and release of infectious virus.
Collapse
|
4
|
Vinogradskaya GR, Ivanov AV, Kushch AA. Mechanisms of Survival of Cytomegalovirus-Infected Tumor Cells. Mol Biol 2022; 56:668-683. [PMID: 36217337 PMCID: PMC9534468 DOI: 10.1134/s0026893322050132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Human cytomegalovirus (HCMV) DNA and proteins are often detected in malignant tumors, warranting studies of the role that HCMV plays in carcinogenesis and tumor progression. HCMV proteins were shown to regulate the key processes involved in tumorigenesis. While HCMV as an oncogenic factor just came into focus, its ability to promote tumor progression is generally recognized. The review discusses the viral factors and cell molecular pathways that affect the resistance of cancer cells to therapy. CMV inhibits apoptosis of tumor cells, that not only promotes tumor progression, but also reduces the sensitivity of cells to antitumor therapy. Autophagy was found to facilitate either cell survival or cell death in different tumor cells. In leukemia cells, HCMV induces a "protective" autophagy that suppresses apoptosis. Viral factors that mediate drug resistance and their interactions with key cell death pathways are necessary to further investigate in order to develop agents that can restore the tumor sensitivity to anticancer drugs.
Collapse
Affiliation(s)
- G. R. Vinogradskaya
- Konstantinov St. Petersburg Institute of Nuclear Physics, National Research Center “Kurchatov Institute”, 188300 Gatchina, Leningrad oblast Russia
| | - A. V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. A Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
5
|
Antimicrobial peptides with cell-penetrating activity as prophylactic and treatment drugs. Biosci Rep 2022; 42:231731. [PMID: 36052730 PMCID: PMC9508529 DOI: 10.1042/bsr20221789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/18/2023] Open
Abstract
Health is fundamental for the development of individuals and evolution of species. In that sense, for human societies is relevant to understand how the human body has developed molecular strategies to maintain health. In the present review, we summarize diverse evidence that support the role of peptides in this endeavor. Of particular interest to the present review are antimicrobial peptides (AMP) and cell-penetrating peptides (CPP). Different experimental evidence indicates that AMP/CPP are able to regulate autophagy, which in turn regulates the immune system response. AMP also assists in the establishment of the microbiota, which in turn is critical for different behavioral and health aspects of humans. Thus, AMP and CPP are multifunctional peptides that regulate two aspects of our bodies that are fundamental to our health: autophagy and microbiota. While it is now clear the multifunctional nature of these peptides, we are still in the early stages of the development of computational strategies aimed to assist experimentalists in identifying selective multifunctional AMP/CPP to control nonhealthy conditions. For instance, both AMP and CPP are computationally characterized as amphipatic and cationic, yet none of these features are relevant to differentiate these peptides from non-AMP or non-CPP. The present review aims to highlight current knowledge that may facilitate the development of AMP’s design tools for preventing or treating illness.
Collapse
|
6
|
Liu J, Chen Y, Nie L, Liang X, Huang W, Li R. In silico analysis and preclinical findings uncover potential targets of anti-cervical carcinoma and COVID-19 in laminarin, a promising nutraceutical. Front Pharmacol 2022; 13:955482. [PMID: 36016559 PMCID: PMC9395986 DOI: 10.3389/fphar.2022.955482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
Until today, the coronavirus disease 2019 (COVID-19) pandemic has caused 6,043,094 deaths worldwide, and most of the mortality cases have been related to patients with long-term diseases, especially cancer. Autophagy is a cellular process for material degradation. Recently, studies demonstrated the association of autophagy with cancer development and immune disorder, suggesting autophagy as a possible target for cancer and immune therapy. Laminarin is a polysaccharide commonly found in brown algae and has been reported to have pharmaceutic roles in treating human diseases, including cancers. In the present report, we applied network pharmacology with systematic bioinformatic analysis, including gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, reactome pathway analysis, and molecular docking to determine the pharmaceutic targets of laminarin against COVID-19 and cervical cancer via the autophagic process. Our results showed that the laminarin would target ten genes: CASP8, CFTR, DNMT1, HPSE, KCNH2, PIK3CA, PIK3R1, SERPINE1, TLR4, and VEGFA. The enrichment analysis suggested their involvement in cell death, immune responses, apoptosis, and viral infection. In addition, molecular docking further demonstrated the direct binding of laminarin to its target proteins, VEGFA, TLR4, CASP8, and PIK3R1. The present findings provide evidence that laminarin could be used as a combined therapy for treating patients with COVID-19 and cervical cancer.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yudong Chen
- Department of Gynecology, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Litao Nie
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiao Liang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Wenjun Huang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- *Correspondence: Wenjun Huang, ; Rong Li,
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- *Correspondence: Wenjun Huang, ; Rong Li,
| |
Collapse
|