1
|
Li Y, Shao Z, Jiang J, Wang H, Zhang M. Transcription factor NFKB1 mediates TUBB6 to promote the proliferation and suppress apoptosis in glioma via Wnt/β-catenin signaling pathway. Discov Oncol 2025; 16:444. [PMID: 40169445 PMCID: PMC11961833 DOI: 10.1007/s12672-025-02268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/28/2025] [Indexed: 04/03/2025] Open
Abstract
Glioma remains one of the most challenging brain tumors with poor prognosis. In this study, we aimed to elucidate the role of TUBB6 in glioma and its potential as a diagnostic and prognostic biomarker. Analysis of the GSE42656 and TCGA datasets revealed that TUBB6 was significantly upregulated in glioma tissues compared to normal tissues. The diagnostic value of TUBB6 was demonstrated with an area under the curve (AUC) of 0.702, suggesting that it could be used as a biomarker to differentiate gliomas Correlation analyses revealed that high TUBB6 expressions were associated with advanced WHO grades, IDH mutation status, and histological types of glioma. Further investigation identified NFKB1 as a key transcription factor that binds to the promoter region of TUBB6, upregulating its expression in glioma cells. Elevated levels of NFKB1 were associated with poor overall survival and disease-specific survival in glioma patients. Knockdown of NFKB1 resulted in reduced TUBB6 expression in glioma cells, confirming the regulatory roles of NFKB1 in TUBB6 expression. Prognostic analysis using TCGA and CGGA datasets demonstrated that high TUBB6 expression was associated with poorer overall survival (OS) and disease-specific survival (DSS) in glioma patients. TUBB6 was identified as an independent prognostic factor for both OS and DSS. Additionally, pan-cancer analysis revealed that TUBB6 was dysregulated in various tumor types and showed prognostic value across multiple cancers. Functional enrichment analysis of TUBB6-associated differentially expressed genes indicated involvement in immune response, extracellular matrix remodeling, and cytokine signaling pathways. In vitro experiments showed that TUBB6 knockdown suppressed glioma cell proliferation and promoted apoptosis by regulating the canonical Wnt/β-catenin signaling pathway. Our findings suggest that TUBB6 contributes to glioma malignancy through its effects on the Wnt/β-catenin pathway. In conclusion, TUBB6 emerges as a promising biomarker for glioma diagnosis and prognosis. Its regulation by NFKB1 and involvement in key signaling pathways underscore its potential as a therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziyu Shao
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongyan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, China.
| |
Collapse
|
2
|
MacDonald E, Forrester A, Valades-Cruz CA, Madsen TD, Hetmanski JHR, Dransart E, Ng Y, Godbole R, Shp AA, Leconte L, Chambon V, Ghosh D, Pinet A, Bhatia D, Lombard B, Loew D, Larsen MR, Leffler H, Lefeber DJ, Clausen H, Blangy A, Caswell P, Shafaq-Zadah M, Mayor S, Weigert R, Wunder C, Johannes L. Growth factor-triggered de-sialylation controls glycolipid-lectin-driven endocytosis. Nat Cell Biol 2025; 27:449-463. [PMID: 39984654 DOI: 10.1038/s41556-025-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/09/2025] [Indexed: 02/23/2025]
Abstract
Glycolipid-lectin-driven endocytosis controls the formation of clathrin-independent carriers and the internalization of various cargos such as β1 integrin. Whether this process is regulated in a dynamic manner remained unexplored. Here we demonstrate that, within minutes, the epidermal growth factor triggers the galectin-driven endocytosis of cell-surface glycoproteins, such as integrins, that are key regulators of cell adhesion and migration. The onset of this process-mediated by the Na+/H+ antiporter NHE1 as well as the neuraminidases Neu1 and Neu3-requires the pH-triggered enzymatic removal of sialic acids whose presence otherwise prevents galectin binding. De-sialylated glycoproteins are then retrogradely transported to the Golgi apparatus where their glycan make-up is reset to regulate EGF-dependent invasive-cell migration. Further evidence is provided for a role of neuraminidases and galectin-3 in acidification-dependent bone resorption. Glycosylation at the cell surface thereby emerges as a dynamic and reversible regulatory post-translational modification that controls a highly adaptable trafficking pathway.
Collapse
Affiliation(s)
- Ewan MacDonald
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Montpellier Cell Biology Research Center, CRBM, Université de Montpellier, CNRS, Montpellier, France
| | - Alison Forrester
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- WEL Research Institute, Wavre, Belgium
- Université de Namur ASBL, Namur, Belgium
| | - Cesar A Valades-Cruz
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Thomas D Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Joseph H R Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, Brunel University London, London, UK
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rashmi Godbole
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bangalore, India
| | - Ananthan Akhil Shp
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ludovic Leconte
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
| | - Valérie Chambon
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Debarpan Ghosh
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Alexis Pinet
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Dhiraj Bhatia
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Bérangère Lombard
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Clausen
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Anne Blangy
- Montpellier Cell Biology Research Center (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Patrick Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Satyajit Mayor
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Warwick, UK
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| |
Collapse
|
3
|
Oeztuerk M, Herebian D, Dipali K, Hentschel A, Rademacher N, Kraft F, Horvath R, Distelmaier F, Meuth SG, Ruck T, Schara-Schmidt U, Roos A. Multi-omics-based phenotyping of AFG3L2-mutant lymphoblasts determines key factors of a pathophysiological interplay between mitochondrial vulnerability and neurodegeneration in spastic ataxia type 5. Front Mol Neurosci 2025; 18:1548255. [PMID: 40051915 PMCID: PMC11882581 DOI: 10.3389/fnmol.2025.1548255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025] Open
Abstract
Mitochondrial integrity is fundamental to cellular function, upheld by a network of proteases that regulate proteostasis and mitochondrial dynamics. Among these proteases, AFG3L2 is critical due to its roles in maintaining mitochondrial homeostasis, regulating mitochondrial protein quality, and facilitating mitochondrial biogenesis. Mutations in AFG3L2 are implicated in a spectrum of diseases, including spinocerebellar ataxia type 28 (SCA28) and spastic ataxia 5 (SPAX5), as well as other systemic conditions. This study employs a multi-omics approach to investigate the biochemical impact of AFG3L2 mutations in immortalized lymphoblastoid cell lines derived from a patient with biallelic variants leading to spastic ataxia (SPAX5). Our proteomic analysis revealed AFG3L2 impairment, with significant dysregulation of proteins critical for mitochondrial function, cytoskeletal integrity, and cellular metabolism. Specifically, disruptions were observed in mitochondrial dynamics and calcium homeostasis, alongside downregulation of key proteins like COX11, a copper chaperone for complex IV assembly, and NFU1, an iron-sulfur cluster protein linked to spastic paraparesis and infection-related worsening. Lipidomic analysis highlighted substantial alterations in lipid composition, with significant decreases in sphingomyelins, phosphatidylethanolamine, and phosphatidylcholine, reflecting disruptions in lipid metabolism and membrane integrity. Metabolomic profiling did not reveal any significant findings. Our comprehensive investigation into loss of functional AFG3L2 elucidates a pathophysiology extending beyond mitochondrial proteostasis, implicating a wide array of cellular processes. The findings reveal substantial cellular disturbances at multiple levels, contributing to neurodegeneration through disrupted mitochondrial respiratory chain, calcium homeostasis, cytoskeletal integrity, and altered lipid homeostasis. This study underscores the complexity of SPAX5 pathophysiology and the importance of multi-omics approaches in developing effective strategies to address the impact of loss of functional AFG3L2. Our data also highlight the value of immortalized lymphoblastoid cells as a tool for pre-clinical testing and research, offering a detailed biochemical fingerprint that enhances our understanding of SPAX5 and identifies potential areas for further investigation.
Collapse
Affiliation(s)
- Menekse Oeztuerk
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Kale Dipali
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Nina Rademacher
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
4
|
Zhang YR, Li WQ, Zhang ZH, Sun RX, Zhu HJ, Qian HM, Yuan ST, Wang YL. YBX1-driven TUBB6 upregulation facilitates ocular angiogenesis via WNT3A-FZD8 pathway. Theranostics 2025; 15:2680-2699. [PMID: 40083923 PMCID: PMC11898281 DOI: 10.7150/thno.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/09/2025] [Indexed: 03/16/2025] Open
Abstract
Background: Pathological ocular neovascularization, a characteristic feature of proliferative ocular diseases, is a primary contributor to global vision impairment. The dynamics of tubulin are crucial in maintaining ocular homeostasis, closely linked to cellular proliferation and angiogenesis. Elucidating the molecular mechanisms driving this process is vital for formulating effective therapeutic strategies. Methods: Multiple transcriptome analyses revealed upregulation of endothelial tubulin beta-6 chain (Tubb6) in oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) mice models. Transwell migration assay, wound healing assay, tube formation assay, flow cytometry, and immunofluorescent staining were employed to identify the role of TUBB6 knockout (KO) in vitro. The effects of Tubb6 silencing on retinal angiogenesis and choroidal neovascularization were subsequently evaluated. Results: We identified upregulated Tubb6 expression in retinas from OIR mice through combination analyses of single-cell RNA sequencing (scRNA-Seq) and bulk RNA-Seq. The RNA expression profiles of endothelial cells (ECs) from proliferative diabetic retinopathy (PDR) patients and neovascular age-related macular degeneration (nAMD) patients also exhibited an elevation in TUBB6. Notably, Tubb6 was abundantly expressed in ECs and pericytes, and was predominantly localized to proliferative ECs and vascular tip cells. Functional studies demonstrated that TUBB6 knockdown reduced the expression of proliferative and tip cell markers in vitro. Tubb6 deficiency decreased vascular sprouting and tip cell formation of OIR mice retina and retarded CNV progression in vivo. Mechanistically, YBX1, an RNA-binding protein, was identified as an upstream regulator of TUBB6 via binding to its 3' untranslated region (3'UTR) and maintaining mRNA stability. Transcriptome analysis further linked TUBB6 to the activity of WNT pathway. TUBB6 silencing suppressed the WNT signaling pathway, with WNT3A and FZD8 identified as downstream targets. Conclusions: Collectively, our research shed light on the pivotal function of TUBB6 in maintaining ocular homeostasis and uncovered the YBX1-TUBB6-WNT3A/FZD8 pathway's involvement in sprouting angiogenesis. Targeting TUBB6 and developing its specific inhibitor could pioneer new approaches for treating ocular microvascular diseases.
Collapse
Affiliation(s)
- Ye-Ran Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Wei-Qi Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhong-Hong Zhang
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ru-Xu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Hong-Jing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Hui-Ming Qian
- Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Song-Tao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yu-Liang Wang
- The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Kour D, Bowen CA, Srivastava U, Nguyen HM, Kumari R, Kumar P, Brandelli AD, Bitarafan S, Tobin BR, Wood L, Seyfried NT, Wulff H, Rangaraju S. Identification of novel Kv1.3 channel-interacting proteins using proximity labelling in T-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633279. [PMID: 39868101 PMCID: PMC11760797 DOI: 10.1101/2025.01.16.633279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Potassium channels regulate membrane potential, calcium flux, cellular activation and effector functions of adaptive and innate immune cells. The voltage-activated Kv1.3 channel is an important regulator of T cell-mediated autoimmunity and microglia-mediated neuroinflammation. Kv1.3 channels, via protein-protein interactions, are localized with key immune proteins and pathways, enabling functional coupling between K+ efflux and immune mechanisms. To gain insights into proteins and pathways that interact with Kv1.3 channels, we applied a proximity-labeling proteomics approach to characterize protein interactors of the Kv1.3 channel in activated T-cells. Biotin ligase TurboID was fused to either N or C termini of Kv1.3, stably expressed in Jurkat T cells and biotinylated proteins in proximity to Kv1.3 were enriched and quantified by mass spectrometry. We identified over 1,800 Kv1.3 interactors including known interactors (beta-integrins, Stat1) although majority were novel. We found that the N-terminus of Kv1.3 preferentially interacts with protein synthesis and protein trafficking machinery, while the C-terminus interacts with immune signaling and cell junction proteins. T-cell Kv1.3 interactors included 335 cell surface, T-cell receptor complex, mitochondrial, calcium and cytokine-mediated signaling pathway and lymphocyte migration proteins. 178 Kv1.3 interactors in T-cells also represent genetic risk factors of T cell-mediated autoimmunity, including STIM1, which was further validated using co-immunoprecipitation. Our studies reveal novel proteins and molecular pathways that interact with Kv1.3 channels in adaptive (T-cell) and innate immune (microglia), providing a foundation for how Kv1.3 channels may regulate immune mechanisms in autoimmune and neurological diseases.
Collapse
Affiliation(s)
- Dilpreet Kour
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Christine A. Bowen
- Center for Neurodegenerative Diseases, Emory University, Atlanta (GA), USA
- Department of Biochemistry, Emory University, Atlanta (GA), USA
| | - Upasna Srivastava
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Hai M. Nguyen
- Department of Pharmacology, University of California – Davis, Davis (CA), USA
| | - Rashmi Kumari
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Prateek Kumar
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Amanda D. Brandelli
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Sara Bitarafan
- Parker H. Petit Institute for Bioengineering, Georgia Institute of Technology, Atlanta (GA), USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Brendan R Tobin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Levi Wood
- Parker H. Petit Institute for Bioengineering, Georgia Institute of Technology, Atlanta (GA), USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Diseases, Emory University, Atlanta (GA), USA
- Department of Biochemistry, Emory University, Atlanta (GA), USA
| | - Heike Wulff
- Department of Pharmacology, University of California – Davis, Davis (CA), USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| |
Collapse
|
6
|
Akula S, Alvarado-Vazquez A, Haide Mendez Enriquez E, Bal G, Franke K, Wernersson S, Hallgren J, Pejler G, Babina M, Hellman L. Characterization of Freshly Isolated Human Peripheral Blood B Cells, Monocytes, CD4+ and CD8+ T Cells, and Skin Mast Cells by Quantitative Transcriptomics. Int J Mol Sci 2024; 25:13050. [PMID: 39684762 DOI: 10.3390/ijms252313050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Quantitative transcriptomics offers a new way to obtain a detailed picture of freshly isolated cells. By direct isolation, the cells are unaffected by in vitro culture, and the isolation at cold temperatures maintains the cells relatively unaltered in phenotype by avoiding activation through receptor cross-linking or plastic adherence. Simultaneous analysis of several cell types provides the opportunity to obtain detailed pictures of transcriptomic differences between them. Here, we present such an analysis focusing on four human blood cell populations and compare those to isolated human skin mast cells. Pure CD19+ peripheral blood B cells, CD14+ monocytes, and CD4+ and CD8+ T cells were obtained by fluorescence-activated cell sorting, and KIT+ human connective tissue mast cells (MCs) were purified by MACS sorting from healthy skin. Detailed information concerning expression levels of the different granule proteases, protease inhibitors, Fc receptors, other receptors, transcription factors, cell signaling components, cytoskeletal proteins, and many other protein families relevant to the functions of these cells were obtained and comprehensively discussed. The MC granule proteases were found exclusively in the MC samples, and the T-cell granzymes in the T cells, of which several were present in both CD4+ and CD8+ T cells. High levels of CD4 were also observed in MCs and monocytes. We found a large variation between the different cell populations in the expression of Fc receptors, as well as for lipid mediators, proteoglycan synthesis enzymes, cytokines, cytokine receptors, and transcription factors. This detailed quantitative comparative analysis of more than 780 proteins of importance for the function of these populations can now serve as a good reference material for research into how these entities shape the role of these cells in immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Abigail Alvarado-Vazquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Erika Haide Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sara Wernersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
7
|
Wang S, Liu M, Zhang H, He S, Li W, Liang L. Genome-Wide Association Study of Body Weight Traits in Texel and Kazakh Crossbred Sheep. Genes (Basel) 2024; 15:1521. [PMID: 39766789 PMCID: PMC11675303 DOI: 10.3390/genes15121521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Originating from the cold and arid regions of northwestern China, Kazakh sheep are dual-purpose breeds optimized for both meat and fat production. In contrast, Texel sheep are internationally recognized for their high-quality meat and exceptional flavor. Previous studies have indicated that the hybrids of Texel and Kazakh sheep exhibit significant quality advantages. Additionally, body weight is a crucial indicator of sheep production performance, directly correlating with meat yield and economic returns. Objective: This study aims to identify genetic variations and related genes associated with the body weight traits of hybrid lambs, thereby revealing their genetic mechanisms. Methods: This study genotyped hybrid lambs using a 50K chip and performed rigorous quality control on both genotypic and phenotypic data. The traits examined include body weight traits of lambs at various stages such as birth, pre-weaning, and post-weaning. Various genome-wide association study (GWAS) models were utilized to analyze the association between lamb body weight traits and genetic markers. The study then employed an Ensemble-like GWAS (E-GWAS) strategy to integrate these models, achieving a stable list of SNPs, rather than a mere aggregation. Multiple annotation databases were consulted to further investigate the mechanisms by which genetic markers affect body weight traits. All study results were validated through an extensive literature review. Results: Analyses with multiple statistical models revealed that 48 SNPs were significantly associated with body weight traits. The annotation process identified 24 related genes (including 4 unknown genes) and 9 quantitative trait loci (QTLs). Additionally, 6 Gene Ontology (GO) terms and 22 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined. Conclusions: This study identified key genes and pathways in the body weight traits of hybrids between Texel and Kazakh sheep, enhancing our understanding of their genetic mechanisms.
Collapse
Affiliation(s)
- Sheng Wang
- College of Mathematics and System Science, Xinjiang University, Urumqi 830000, China;
| | - Mingjun Liu
- Key Laboratory of Animal Biotechnology of Xinjiang, Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Minisitry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China; (W.L.); (L.L.)
| | - Huiguo Zhang
- College of Mathematics and System Science, Xinjiang University, Urumqi 830000, China;
| | - Sangang He
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Wenrong Li
- Key Laboratory of Animal Biotechnology of Xinjiang, Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Minisitry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China; (W.L.); (L.L.)
| | - Long Liang
- Key Laboratory of Animal Biotechnology of Xinjiang, Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Minisitry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China; (W.L.); (L.L.)
| |
Collapse
|
8
|
Gandhi N, Omer S, Harrison RE. In Vitro Cell Culture Model for Osteoclast Activation during Estrogen Withdrawal. Int J Mol Sci 2024; 25:6134. [PMID: 38892322 PMCID: PMC11173070 DOI: 10.3390/ijms25116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Estrogen (17β-estradiol) deficiency post-menopause alters bone homeostasis whereby bone resorption by osteoclasts exceeds bone formation by osteoblasts, leading to osteoporosis in females. We established an in vitro model to examine the consequences of estrogen withdrawal (E2-WD) on osteoclasts derived from the mouse macrophage RAW 264.7 cell line and utilized it to investigate the mechanism behind the enhanced osteoclast activity post-menopause. We found that a greater population of osteoclasts that underwent E2-WD contained a podosome belt necessary for osteoclasts to adhere and resorb bone and possessed elevated resorptive activity compared to osteoclasts exposed to estrogen (E2) continuously. Our results show that compared to osteoclasts that received E2 continuously, those that underwent E2-WD had a faster rate of microtubule (MT) growth, reduced RhoA activation, and shorter podosome lifespan. Thus, altered podosome and MT dynamics induced by the withdrawal of estrogen supports podosome belt assembly/stability in osteoclasts, which may explain their enhanced bone resorption activity.
Collapse
Affiliation(s)
- Nisha Gandhi
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Safia Omer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| |
Collapse
|
9
|
Morel A, Douat C, Blangy A, Vives V. Bone resorption by osteoclasts involves fine tuning of RHOA activity by its microtubule-associated exchange factor GEF-H1. Front Physiol 2024; 15:1342024. [PMID: 38312316 PMCID: PMC10834693 DOI: 10.3389/fphys.2024.1342024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Bone health is controlled by the balance between bone formation by osteoblasts and degradation by osteoclasts. A disequilibrium in favor of bone resorption leads to osteolytic diseases characterized by decreased bone density. Osteoclastic resorption is dependent on the assembly of an adhesion structure: the actin ring, also called podosome belt or sealing zone, which is composed of a unique patterning of podosomes stabilized by microtubules. A better understanding of the molecular mechanisms regulating the crosstalk between actin cytoskeleton and microtubules network is key to find new treatments to inhibit bone resorption. Evidence points to the importance of the fine tuning of the activity of the small GTPase RHOA for the formation and maintenance of the actin ring, but the underlying mechanism is not known. We report here that actin ring disorganization upon microtubule depolymerization is mediated by the activation of the RHOA-ROCK signaling pathway. We next show the involvement of GEF-H1, one of RHOA guanine exchange factor highly expressed in osteoclasts, which has the particularity of being negatively regulated by sequestration on microtubules. Using a CRISPR/Cas9-mediated GEF-H1 knock-down osteoclast model, we demonstrate that RHOA activation upon microtubule depolymerization is mediated by GEF-H1 release. Interestingly, although lower levels of GEF-H1 did not impact sealing zone formation in the presence of an intact microtubule network, sealing zone was smaller leading to impaired resorption. Altogether, these results suggest that a fine tuning of GEF-H1 through its association with microtubules, and consequently of RHOA activity, is essential for osteoclast sealing zone stability and resorption function.
Collapse
Affiliation(s)
- Anne Morel
- CRBM (Montpellier cell Biology Research Center), Univ Montpellier, CNRS (National Center for Scientific Research), Montpellier, France
| | - Christophe Douat
- CRBM (Montpellier cell Biology Research Center), Univ Montpellier, CNRS (National Center for Scientific Research), Montpellier, France
| | - Anne Blangy
- CRBM (Montpellier cell Biology Research Center), Univ Montpellier, CNRS (National Center for Scientific Research), Montpellier, France
| | - Virginie Vives
- CRBM (Montpellier cell Biology Research Center), Univ Montpellier, CNRS (National Center for Scientific Research), Montpellier, France
| |
Collapse
|
10
|
McKenna ED, Sarbanes SL, Cummings SW, Roll-Mecak A. The Tubulin Code, from Molecules to Health and Disease. Annu Rev Cell Dev Biol 2023; 39:331-361. [PMID: 37843925 DOI: 10.1146/annurev-cellbio-030123-032748] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Microtubules are essential dynamic polymers composed of α/β-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and β-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.
Collapse
Affiliation(s)
- Elizabeth D McKenna
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Stephanie L Sarbanes
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Changes on proteomic and metabolomic profiling of cryopreserved sperm effected by melatonin. J Proteomics 2023; 273:104791. [PMID: 36538967 DOI: 10.1016/j.jprot.2022.104791] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Cryopreservation may reduce sperm fertility due to cryodamage including physical-chemical and oxidative stress damages. As a powerful antioxidant, melatonin has been reported to improve cryoprotective effect of sperm. However, the molecular mechanism of melatonin on cryopreserved ram sperm hasn't been fully understand. Give this, this study aimed to investigate the postthaw motility parameters, antioxidative enzyme activities and lipid peroxidation, as well as proteomic, metabolomic changes of Huang-huai ram spermatozoa with freezing medium supplemented with melatonin. Melatonin was firstly replenished to the medium to yield five different final concentrations: 0.1, 0.5, 1.0, 1.5, and 2.0 mM. A control (NC) group without melatonin replenishment was included. Protective effects of melatonin as evidenced by postthaw motility, activities of T-AOC, T-SOD, GSH-Px, CAT, contents of MDA, 4-HNE, as well as acrosome integrity, plasma membrane integrity, with 0.5 mM being the most effective concentration (MC group). Furthermore, 29 differentially abundant proteins involving in sperm functions were screened among Fresh, NC and MC groups of samples (n = 5) based on the 4D-LFQ, with 7 of them upregulated in Fresh and MC groups. 26 differentially abundant metabolites were obtained involving in sperm metabolism among the three groups of samples (n = 8) based on the UHPLC-QE-MS, with 18 of them upregulated in Fresh and MC groups. According to the bioinformatic analysis, melatonin may have positive effects on frozen ram spermatozoa by regulating the abundance changes of vital proteins and metabolites related to sperm function. Particularly, several proteins such as PRCP, NDUFB8, NDUFB9, SDHC, DCTN1, TUBB6, TUBA3E, SSNA1, as well as metabolites like L-histidine, L-targinine, ursolic acid, xanthine may be potential novel biomarkers for evaluating the postthaw quality of ram spermatozoa. In conclusion, a dose-dependent replenishment of melatonin to freezing medium protected ram spermatozoa during cryopreservation, which can improve motility, antioxidant enzyme activities, reduce levels of lipid peroxidation products, modify the proteomic and metabolomic profiling of cryopreserved ram spermatozoa through reduction of oxidative stress, maintenance of OXPHOS and microtubule structure. SIGNIFICANCE: Melatonin, a powerful antioxidant protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner, with 0.5 mM being the most effective concentration. Furthermore, sequencing results based on the 4D-LFQ combined with the UHPLC-QE-MS indicated that melatonin modifies proteomic and metabolomic profiling of ram sperm during cryopreservation. According to the bioinformatic analysis, melatonin may have positive effects on frozen ram spermatozoa by regulating the expression changes of vital proteins and metabolites related to sperm metabolism and function. Particularly, several potential novel biomarkers for evaluating the postthaw quality of ram spermatozoa were acquired, proteins such as PRCP, NDUFB8, NDUFB9, SDHC, DCTN1, TUBB6, TUBA3E, SSNA1, as well as metabolites like L-histidine, L-targinine, ursolic acid, xanthine.
Collapse
|