1
|
Abolins-Thompson H, Henare KL, Simonson B, Chaffin M, Ellinor PT, Henry C, Haimona M, Aitken J, Parai T, Elkington B, Rongo M, Danielson KM, Leask MP. Culturally responsive strategies and practical considerations for live tissue studies in Māori participant cohorts. Front Res Metr Anal 2024; 9:1468400. [PMID: 39564513 PMCID: PMC11573560 DOI: 10.3389/frma.2024.1468400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Indigenous communities globally are inequitably affected by non-communicable diseases such as cancer and coronary artery disease. Increased focus on personalized medicine approaches for the treatment of these diseases offers opportunities to improve the health of Indigenous people. Conversely, poorly implemented approaches pose increased risk of further exacerbating current inequities in health outcomes for Indigenous peoples. The advancement of modern biology techniques, such as three-dimensional (3D) in vitro models and next generation sequencing (NGS) technologies, have enhanced our understanding of disease mechanisms and individualized treatment responses. However, current representation of Indigenous peoples in these datasets is lacking. It is crucial that there is appropriate and ethical representation of Indigenous peoples in generated datasets to ensure these technologies can be used to maximize the benefit of personalized medicine for Indigenous peoples. Methods This project discusses the use of 3D tumor organoids and single cell/nucleus RNA sequencing to study cancer treatment responses and explore immune cell roles in coronary artery disease. Using key pillars from currently available Indigenous bioethics frameworks, strategies were developed for the use of Māori participant samples for live tissue and sequencing studies. These were based on extensive collaborations with local Māori community, scientific leaders, clinical experts, and international collaborators from the Broad Institute of MIT and Harvard. Issues surrounding the use of live tissue, genomic data, sending samples overseas and Indigenous data sovereignty were discussed. Results This paper illustrates a real-world example of how collaboration with community and the incorporation of Indigenous worldviews can be applied to molecular biology studies in a practical and culturally responsive manner, ensuring fair and equitable representation of Indigenous peoples in modern scientific data.
Collapse
Affiliation(s)
- Helena Abolins-Thompson
- Department of Surgery and Anesthesia, University of Otago Wellington, Wellington, New Zealand
| | - Kimiora L Henare
- Faculty of Medical and Health Sciences, Molecular Medicine and Pathology, Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
| | - Bridget Simonson
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Mark Chaffin
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Claire Henry
- Department of Surgery and Anesthesia, University of Otago Wellington, Wellington, New Zealand
| | - Mairarangi Haimona
- Department of General Surgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Jake Aitken
- Te Rōpū Rangahau Hauora a Eru Pōmare, University of Otago Wellington, Wellington, New Zealand
| | - Taku Parai
- Te Rūnanga o Toa Rangatira, Porirua, New Zealand
| | | | | | - Kirsty M Danielson
- Department of Surgery and Anesthesia, University of Otago Wellington, Wellington, New Zealand
| | - Megan P Leask
- Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Stiefbold M, Zhang H, Wan LQ. Engineered platforms for mimicking cardiac development and drug screening. Cell Mol Life Sci 2024; 81:197. [PMID: 38664263 PMCID: PMC11045633 DOI: 10.1007/s00018-024-05231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Congenital heart defects are associated with significant health challenges, demanding a deep understanding of the underlying biological mechanisms and, thus, better devices or platforms that can recapitulate human cardiac development. The discovery of human pluripotent stem cells has substantially reduced the dependence on animal models. Recent advances in stem cell biology, genetic editing, omics, microfluidics, and sensor technologies have further enabled remarkable progress in the development of in vitro platforms with increased fidelity and efficiency. In this review, we provide an overview of advancements in in vitro cardiac development platforms, with a particular focus on technological innovation. We categorize these platforms into four areas: two-dimensional solid substrate cultures, engineered substrate architectures that enhance cellular functions, cardiac organoids, and embryos/explants-on-chip models. We conclude by addressing current limitations and presenting future perspectives.
Collapse
Affiliation(s)
- Madison Stiefbold
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8t Street, Troy, NY, 12180, USA
| | - Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8t Street, Troy, NY, 12180, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8t Street, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
3
|
Wang W, Li T, Wang Z, Yin Y, Zhang S, Wang C, Hu X, Lu S. Bibliometric analysis of research on neurodegenerative diseases and single-cell RNA sequencing: Opportunities and challenges. iScience 2023; 26:107833. [PMID: 37736042 PMCID: PMC10509354 DOI: 10.1016/j.isci.2023.107833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Neurodegeneration, characterized by the progressive deterioration in neuronal structure or function, presents an elusive mechanism. The use of single-cell RNA sequencing (scRNA-seq) technology in the clinic is becoming increasingly prevalent in recent decades. This technology offers unparalleled cell-level insights into neurodegenerative diseases, establishing itself as a potent tool for elucidating these diseases underlying mechanisms. Here, we made a deep investigation for scRNA-seq research in neurodegenerative diseases using bibliometric analysis from 2009 to 2022. We observed a robust upward trajectory in the number of publications on this subject. The United States stood out as the principal contributor to this expanding field. Specifically, the University of California System exhibited notable research prowess in this field. Alzheimer disease and Parkinson disease were the diseases most frequently investigated. Key research hotspots include the creation of a molecular brain atlas and identification of vulnerable neuronal subpopulations and potential therapeutic targets at the transcriptomic level.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Tianhua Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yaxin Yin
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Sitao Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chaodong Wang
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
4
|
Neuber S, Ermer MR, Emmert MY, Nazari-Shafti TZ. Treatment of Cardiac Fibrosis with Extracellular Vesicles: What Is Missing for Clinical Translation? Int J Mol Sci 2023; 24:10480. [PMID: 37445658 PMCID: PMC10342089 DOI: 10.3390/ijms241310480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Heart failure is the leading cause of morbidity and mortality and currently affects more than 60 million people worldwide. A key feature in the pathogenesis of almost all forms of heart failure is cardiac fibrosis, which is characterized by excessive accumulation of extracellular matrix components in the heart. Although cardiac fibrosis is beneficial in the short term after acute myocardial injury to preserve the structural and functional integrity of the heart, persistent cardiac fibrosis contributes to pathological cardiac remodeling, leading to mechanical and electrical dysfunction of the heart. Despite its high prevalence, standard therapies specifically targeting cardiac fibrosis are not yet available. Cell-based approaches have been extensively studied as potential treatments for cardiac fibrosis, but several challenges have been identified during clinical translation. The observation that extracellular vesicles (EVs) derived from stem and progenitor cells exhibit some of the therapeutic effects of the parent cells has paved the way to overcome limitations associated with cell therapy. However, to make EV-based products a reality, standardized methods for EV production, isolation, characterization, and storage must be established, along with concrete evidence of their safety and efficacy in clinical trials. This article discusses EVs as novel therapeutics for cardiac fibrosis from a translational perspective.
Collapse
Affiliation(s)
- Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
| | - Miriam R. Ermer
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Maximilian Y. Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
- Institute for Regenerative Medicine, University of Zurich, 8044 Zurich, Switzerland
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
| |
Collapse
|
5
|
Abstract
Epigenetics has transformed our understanding of the molecular basis of complex diseases, including cardiovascular and metabolic disorders. This review offers a comprehensive overview of the current state of knowledge on epigenetic processes implicated in cardiovascular and metabolic diseases, highlighting the potential of DNA methylation as a precision medicine biomarker and examining the impact of social determinants of health, gut bacterial epigenomics, noncoding RNA, and epitranscriptomics on disease development and progression. We discuss challenges and barriers to advancing cardiometabolic epigenetics research, along with the opportunities for novel preventive strategies, targeted therapies, and personalized medicine approaches that may arise from a better understanding of epigenetic processes. Emerging technologies, such as single-cell sequencing and epigenetic editing, hold the potential to further enhance our ability to dissect the complex interplay between genetic, environmental, and lifestyle factors. To translate research findings into clinical practice, interdisciplinary collaborations, technical and ethical considerations, and accessibility of resources and knowledge are crucial. Ultimately, the field of epigenetics has the potential to revolutionize the way we approach cardiovascular and metabolic diseases, paving the way for precision medicine and personalized health care, and improving the lives of millions of individuals worldwide affected by these conditions.
Collapse
Affiliation(s)
- Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, New York (A.A.B.)
| | - José Ordovás
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, at Tufts University, Boston, MA (J.O.)
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain (J.O.)
- Consortium CIBERObn, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (J.O.)
| |
Collapse
|
6
|
Yin Y, Huang C, Wang Z, Huang P, Qin S. Identification of cellular heterogeneity and key signaling pathways associated with vascular remodeling and calcification in young and old primate aortas based on single-cell analysis. Aging (Albany NY) 2022; 15:982-1003. [PMID: 36566020 PMCID: PMC10008505 DOI: 10.18632/aging.204442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Aging of the vascular system is the main cause of many cardiovascular diseases. The structure and function of the blood vessel wall change with aging. To prevent age-related cardiovascular diseases, it is essential to understand the cellular heterogeneity of vascular wall and changes of cellular communication among cell subpopulations during aging. Here, using published single-cell RNA sequencing datasets of young and old monkey aortas, we analyzed the heterogeneity of vascular endothelial cells and smooth muscle cells in detail and identified a distinct endothelial cell subpopulation that involved in vascular remodeling and calcification. Moreover, cellular communication that changed with aging was analyzed and we identified a number of signaling pathways that associated with vascular aging. We found that EGF signaling pathway play an essential role in vascular remodeling and calcification of aged aortas. This work provided a better understanding of vascular aging and laid the foundation for prevention of age-related vascular pathologies.
Collapse
Affiliation(s)
- Yehu Yin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China.,Institute of Medicine, Jishou University, Jishou 416000, P.R. China
| | - Congcong Huang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China
| | - Pan Huang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China.,Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China
| |
Collapse
|