1
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb PG, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 Stabilizes the Genome via Nuclear and Cell-Cycle Remodeling to Support Ovarian Cancer Cell Survival. CANCER RESEARCH COMMUNICATIONS 2025; 5:39-53. [PMID: 39625235 PMCID: PMC11705808 DOI: 10.1158/2767-9764.crc-24-0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE High-grade serous ovarian carcinoma is marked by chromosomal instability, which can serve to promote disease progression and allow cancer to evade therapeutic insults. The report highlights the role of claudin-4 in regulating genomic instability and proposes a novel therapeutic approach to exploit claudin-4-mediated regulation.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia G. Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb P, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 remodeling of nucleus-cell cycle crosstalk maintains ovarian tumor genome stability and drives resistance to genomic instability-inducing agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611120. [PMID: 39282307 PMCID: PMC11398366 DOI: 10.1101/2024.09.04.611120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
During cancer development, the interplay between the nucleus and the cell cycle leads to a state of genomic instability, often accompanied by observable morphological aberrations. These aberrations can be controlled by tumor cells to evade cell death, either by preventing or eliminating genomic instability. In epithelial ovarian cancer (EOC), overexpression of the multifunctional protein claudin-4 is a key contributor to therapy resistance through mechanisms associated with genomic instability. However, the molecular mechanisms underlying claudin-4 overexpression in EOC remain poorly understood. Here, we altered claudin-4 expression and employed a unique claudin-4 targeting peptide (CMP) to manipulate the function of claudin-4. We found that claudin-4 facilitates genome maintenance by linking the nuclear envelope and cytoskeleton dynamics with cell cycle progression. Claudin-4 caused nuclei constriction by excluding lamin B1 and promoting perinuclear F-actin accumulation, associated with remodeling nuclear architecture, thus altering nuclear envelope dynamics. Consequently, cell cycle modifications due to claudin-4 overexpression resulted in fewer cells entering the S-phase and reduced genomic instability. Importantly, disrupting biological interactions of claudin-4 using CMP and forskolin altered oxidative stress cellular response and increased the efficacy of PARP inhibitor treatment. Our data indicate that claudin-4 protects tumor genome integrity by remodeling the crosstalk between the nuclei and the cell cycle, leading to resistance to genomic instability formation and the effects of genomic instability-inducing agents.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
3
|
Fu H, Zhong J, Zhao J, Huo L, Wang C, Ma D, Pan W, Sun L, Ren Z, Fan T, Wang Z, Wang W, Lei X, Yu G, Li J, Zhu Y, Geelen D, Liu B. Ultraviolet attenuates centromere-mediated meiotic genome stability and alters gametophytic ploidy consistency in flowering plants. THE NEW PHYTOLOGIST 2024; 243:2214-2234. [PMID: 39039772 DOI: 10.1111/nph.19978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Ultraviolet (UV) radiation influences development and genome stability in organisms; however, its impact on meiosis, a special cell division essential for the delivery of genetic information across generations in eukaryotes, has not yet been elucidated. In this study, by performing cytogenetic studies, we reported that UV radiation does not damage meiotic chromosome integrity but attenuates centromere-mediated chromosome stability and induces unreduced gametes in Arabidopsis thaliana. We showed that functional centromere-specific histone 3 (CENH3) is required for obligate crossover formation and plays a role in the protection of sister chromatid cohesion under UV stress. Moreover, we found that UV specifically alters the orientation and organization of spindles and phragmoplasts at meiosis II, resulting in meiotic restitution and unreduced gametes. We determined that UV-induced meiotic restitution does not rely on the UV Resistance Locus8-mediated UV perception and the Tapetal Development and Function1- and Aborted Microspores-dependent tapetum development, but possibly occurs via altered JASON function and downregulated Parallel Spindle1. This study provides evidence that UV radiation influences meiotic genome stability and gametophytic ploidy consistency in flowering plants.
Collapse
Affiliation(s)
- Huiqi Fu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jiaqi Zhong
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jiayi Zhao
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Li Huo
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Dexuan Ma
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenjing Pan
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Limin Sun
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tianyi Fan
- Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Ze Wang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenyi Wang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaoning Lei
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guanghui Yu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jing Li
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yan Zhu
- Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Danny Geelen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Bing Liu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
4
|
Kumazoe M, Fujimura Y, Shimada Y, Onda H, Hatakeyama Y, Tachibana H. Fustin suppressed melanoma cell growth via cAMP/PKA-dependent mechanism. Biosci Biotechnol Biochem 2024; 88:900-907. [PMID: 38835135 DOI: 10.1093/bbb/zbae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Melanoma, a cancer arising from melanocytes, requires a novel treatment strategy because of the ineffectiveness of conventional therapies in certain patients. Fustin is a flavanonol found in young fustic (Cotinus coggygria). However, little is known about its antimelanoma effects. Our study demonstrates that fustin suppresses the growth of B16 melanoma cells. Phalloidin staining of cytoskeletal actin revealed that fustin induced a conformational change in the actin structure of melanoma cells, accompanied by suppressed phosphorylation of myosin regulatory light chain 2 (MLC2), a regulator of actin structure. Furthermore, the protein kinase A (cAMP-dependent protein kinase) inhibitor H89 completely attenuated fustin-induced downregulation of phosphorylated myosin phosphatase targeting subunit 1, which is involved in dephosphorylation of MLC2. In a mouse model, administration of fustin suppressed tumor growth in B16 melanoma cells without adverse effects. In conclusion, our findings suggest that fustin effectively suppresses melanoma cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yu Shimada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiroaki Onda
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yui Hatakeyama
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Wang D, Woodcock E, Yang X, Nishikawa H, Sviderskaya EV, Oshima M, Edwards C, Zhang Y, Korchev Y. Exploration of individual colorectal cancer cell responses to H 2O 2 eustress using hopping probe scanning ion conductance microscopy. Sci Bull (Beijing) 2024; 69:1909-1919. [PMID: 38644130 DOI: 10.1016/j.scib.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Colorectal cancer (CRC), a widespread malignancy, is closely associated with tumor microenvironmental hydrogen peroxide (H2O2) levels. Some clinical trials targeting H2O2 for cancer treatment have revealed its paradoxical role as a promoter of cancer progression. Investigating the dynamics of cancer cell H2O2 eustress at the single-cell level is crucial. In this study, non-contact hopping probe mode scanning ion conductance microscopy (HPICM) with high-sensitive Pt-functionalized nanoelectrodes was employed to measure dynamic extracellular to intracellular H2O2 gradients in individual colorectal cancer Caco-2 cells. We explored the relationship between cellular mechanical properties and H2O2 gradients. Exposure to 0.1 or 1 mmol/L H2O2 eustress increased the extracellular to intracellular H2O2 gradient from 0.3 to 1.91 or 3.04, respectively. Notably, cellular F-actin-dependent stiffness increased at 0.1 mmol/L but decreased at 1 mmol/L H2O2 eustress. This H2O2-induced stiffness modulated AKT activation positively and glutathione peroxidase 2 (GPX2) expression negatively. Our findings unveil the failure of some H2O2-targeted therapies due to their ineffectiveness in generating H2O2, which instead acts eustress to promote cancer cell survival. This research also reveals the complex interplay between physical properties and biochemical signaling in cancer cells' antioxidant defense, illuminating the exploitation of H2O2 eustress for survival at the single-cell level. Inhibiting GPX and/or catalase (CAT) enhances the cytotoxic activity of H2O2 eustress against CRC cells, which holds significant promise for developing innovative therapies targeting cancer and other H2O2-related inflammatory diseases.
Collapse
Affiliation(s)
- Dong Wang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Emily Woodcock
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Xi Yang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiromi Nishikawa
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Masanobu Oshima
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Christopher Edwards
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Yanjun Zhang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan; Department of Medicine, Imperial College London, London W12 0NN, United Kingdom.
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
6
|
Zhou L, Na J, Liu X, Wu P. Chromophore-Assisted Light Inactivation for Protein Degradation and Its Application in Biomedicine. Bioengineering (Basel) 2024; 11:651. [PMID: 39061733 PMCID: PMC11273424 DOI: 10.3390/bioengineering11070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The functional investigation of proteins holds immense significance in unraveling physiological and pathological mechanisms of organisms as well as advancing the development of novel pharmaceuticals in biomedicine. However, the study of cellular protein function using conventional genetic manipulation methods may yield unpredictable outcomes and erroneous conclusions. Therefore, precise modulation of protein activity within cells holds immense significance in the realm of biomedical research. Chromophore-assisted light inactivation (CALI) is a technique that labels photosensitizers onto target proteins and induces the production of reactive oxygen species through light control to achieve precise inactivation of target proteins. Based on the type and characteristics of photosensitizers, different excitation light sources and labeling methods are selected. For instance, KillerRed forms a fusion protein with the target protein through genetic engineering for labeling and inactivates the target protein via light activation. CALI is presently predominantly employed in diverse biomedical domains encompassing investigations into protein functionality and interaction, intercellular signal transduction research, as well as cancer exploration and therapy. With the continuous advancement of CALI technology, it is anticipated to emerge as a formidable instrument in the realm of life sciences, yielding more captivating outcomes for fundamental life sciences and precise disease diagnosis and treatment.
Collapse
Affiliation(s)
- Lvjia Zhou
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (L.Z.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (L.Z.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (L.Z.); (J.N.)
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (L.Z.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
7
|
Jung J, Ku M, Jeong S, Yoon N, Park JH, Youn HS, Yang J, Seo S. Antioxidative Impact of Phenolics-Loaded Nanocarriers on Cytoskeletal Network Remodeling of Invasive Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37438323 PMCID: PMC10375430 DOI: 10.1021/acsami.3c04693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Natural phenolic compounds have antioxidant properties owing to their free radical-scavenging capability. The combined effect of a mixture of phenolic compounds has been studied; however, the detailed investigation for finding a correlation between single phenolic molecules and antioxidant activity has not been explored. Herein, we revealed that the number of phenolic hydroxyl groups in phenolics played a central role in their antioxidant capacity. Based on the finding, tannic acid showed the most effective antioxidant potential, e.g., 76% in tannic acid versus 22% in vitamin C as a standard antioxidant component. Because cancer progression is closely related to oxidative processes at the cellular level, we further applied the surface treatment of tannic acid drug-delivery nanocarriers. Tannic acid-loaded nanocarriers reduced reactive oxygen species of cancer cells as much as 41% of vehicle treatment and remodeled cytoskeletal network. By a gelatin degradation study, TA-loaded nanocarrier-treated cells induced 44.6% reduction of degraded area than vehicle-treated cells, implying a potential of blocking invasiveness of cancer cells.
Collapse
Affiliation(s)
- Jaewon Jung
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Minhee Ku
- Department of Radiology, College of Medicine, Seoul 03722, Republic of Korea
- Systems Molecular Radiology, Yonsei University, Seoul 03722, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Suhui Jeong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Nara Yoon
- Department of Radiology, College of Medicine, Seoul 03722, Republic of Korea
- Systems Molecular Radiology, Yonsei University, Seoul 03722, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Hyun Park
- Young Chemical Co. Ltd., 80-93, Golden Root-ro, Juchon-myeon, Gimhae 50969, Republic of Korea
| | - Han Sung Youn
- Young Chemical Co. Ltd., 80-93, Golden Root-ro, Juchon-myeon, Gimhae 50969, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Seoul 03722, Republic of Korea
- Systems Molecular Radiology, Yonsei University, Seoul 03722, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|