1
|
Bang S, Qamar AY, Lee SY, Han A, Kang H, Tanga BM, Yun SH, Park HS, Kim SI, Yoo WG, Saadeldin IM, Lee S, Cho J. Proteomics Analysis of Porcine Endometrial Cell-Derived Extracellular Vesicles Involved in Embryo Attachment. Mol Cell Proteomics 2025; 24:100942. [PMID: 40081538 PMCID: PMC12004383 DOI: 10.1016/j.mcpro.2025.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025] Open
Abstract
Maternal-embryo interactions play a critical role in early mammalian development, with extracellular vesicles (EVs) playing a key role in intercellular communication. Recent studies have focused on the mechanisms by which maternal-derived factors, such as RNA, proteins, and metabolites influence gap junctions, EVs, and direct cell-to-cell interactions, contributing to embryonic development. In this study, using a proteomics approach, we investigated the impact of EVs secreted from porcine endometrial cells (pEECs) and their protein cargoes on embryonic development. We characterized EVs isolated from pEECs (pEEC-EVs) during the diestrus stage using a nanoparticle tracking analysis and cryo-transmission electron microscopy. Furthermore, the effects of pEEC-EVs with or without hormone treatment on the in vitro attachment of hatched blastocysts were evaluated. The attachment rate of porcine embryos was significantly higher for pEEC-EVs in the hormone treatment group than the control group (23.0 ± 1.7% versus 36.9 ± 1.9% for control and pEEC-EVs, respectively). Furthermore, hormone treatment altered the expression of proteins involved in cellular organization, protein transport, and immunity. Proteomic analysis revealed distinct biological processes between groups: control EVs supported cytoskeletal organization and adhesion, while hormone-treated EVs were enriched in protein transport, immune regulation, and stress response pathways. Key signaling pathways, including VEGFA-VEGFR2, focal adhesion, and TGF-β, were modulated, influencing implantation and embryogenesis. EVs play a crucial role in maternal-embryo interactions, optimizing implantation conditions and supporting embryo-derived stem cell establishment. These findings enhance our understanding of EV-mediated communication and suggest potential applications for improving reproductive health and assisted reproductive technologies.
Collapse
Affiliation(s)
- Seonggyu Bang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea; College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ahmad Yar Qamar
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sang-Yeop Lee
- Korea Basic Science Institute (KBSI), Chungcheongbuk-do, Republic of Korea
| | - Ayeong Han
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea; College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Heejae Kang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea; College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Chungcheongbuk-do, Republic of Korea
| | - Hye Sun Park
- Korea Basic Science Institute (KBSI), Chungcheongbuk-do, Republic of Korea
| | - Seung Il Kim
- Korea Basic Science Institute (KBSI), Chungcheongbuk-do, Republic of Korea
| | - Won Gi Yoo
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Moon MJ, Rai A, Sharma P, Fang H, McFadyen JD, Greening DW, Peter K. Differential effects of physiological agonists on the proteome of platelet-derived extracellular vesicles. Proteomics 2024; 24:e2300391. [PMID: 38556629 DOI: 10.1002/pmic.202300391] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Arterial thrombosis manifesting as heart attack and stroke is the leading cause of death worldwide. Platelets are central mediators of thrombosis that can be activated through multiple activation pathways. Platelet-derived extracellular vesicles (pEVs), also known as platelet-derived microparticles, are granular mixtures of membrane structures produced by platelets in response to various activating stimuli. Initial studies have attracted interest on how platelet agonists influence the composition of the pEV proteome. In the current study, we used physiological platelet agonists of varying potencies which reflect the microenvironments that platelets experience during thrombus formation: adenosine diphosphate, collagen, thrombin as well as a combination of thrombin/collagen to induce platelet activation and pEV generation. Proteomic profiling revealed that pEVs have an agonist-dependent altered proteome in comparison to their cells of origin, activated platelets. Furthermore, we found that various protein classes including those related to coagulation and complement (prothrombin, antithrombin, and plasminogen) and platelet activation (fibrinogen) are attributed to platelet EVs following agonist stimulation. This agonist-dependent altered proteome suggests that protein packaging is an active process that appears to occur without de novo protein synthesis. This study provides new information on the influence of physiological agonist stimuli on the biogenesis and proteome landscape of pEVs.
Collapse
Affiliation(s)
- Mitchell J Moon
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alin Rai
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Prerna Sharma
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Haoyun Fang
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - James D McFadyen
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Haematology, Alfred Hospital, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - David W Greening
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Poh QH, Rai A, Cross J, Greening DW. HB-EGF-loaded nanovesicles enhance trophectodermal spheroid attachment and invasion. Proteomics 2024; 24:e2200145. [PMID: 38214697 DOI: 10.1002/pmic.202200145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
The ability of trophectodermal cells (outer layer of the embryo) to attach to the endometrial cells and subsequently invade the underlying matrix are critical stages of embryo implantation during successful pregnancy establishment. Extracellular vesicles (EVs) have been implicated in embryo-maternal crosstalk, capable of reprogramming endometrial cells towards a pro-implantation signature and phenotype. However, challenges associated with EV yield and direct loading of biomolecules limit their therapeutic potential. We have previously established generation of cell-derived nanovesicles (NVs) from human trophectodermal cells (hTSCs) and their capacity to reprogram endometrial cells to enhance adhesion and blastocyst outgrowth. Here, we employed a rapid NV loading strategy to encapsulate potent implantation molecules such as HB-EGF (NVHBEGF). We show these loaded NVs elicit EGFR-mediated effects in recipient endometrial cells, activating kinase phosphorylation sites that modulate their activity (AKT S124/129, MAPK1 T185/Y187), and downstream signalling pathways and processes (AKT signal transduction, GTPase activity). Importantly, they enhanced target cell attachment and invasion. The phosphoproteomics and proteomics approach highlight NVHBEGF-mediated short-term signalling patterns and long-term reprogramming capabilities on endometrial cells which functionally enhance trophectodermal-endometrial interactions. This proof-of-concept study demonstrates feasibility in enhancing the functional potency of NVs in the context of embryo implantation.
Collapse
Affiliation(s)
- Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jonathon Cross
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Poh QH, Rai A, Pangestu M, Salamonsen LA, Greening DW. Rapid generation of functional nanovesicles from human trophectodermal cells for embryo attachment and outgrowth. Proteomics 2024; 24:e2300056. [PMID: 37698557 DOI: 10.1002/pmic.202300056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Extracellular vesicles (EVs) are important mediators of embryo attachment and outgrowth critical for successful implantation. While EVs have garnered immense interest in their therapeutic potential in assisted reproductive technology by improving implantation success, their large-scale generation remains a major challenge. Here, we report a rapid and scalable production of nanovesicles (NVs) directly from human trophectoderm cells (hTSCs) via serial mechanical extrusion of cells; these NVs can be generated in approximately 6 h with a 20-fold higher yield than EVs isolated from culture medium of the same number of cells. NVs display similar biophysical traits (morphologically intact, spherical, 90-130 nm) to EVs, and are laden with hallmark players of implantation that include cell-matrix adhesion and extracellular matrix organisation proteins (ITGA2/V, ITGB1, MFGE8) and antioxidative regulators (PRDX1, SOD2). Functionally, NVs are readily taken up by low-receptive endometrial HEC1A cells and reprogram their proteome towards a receptive phenotype that support hTSC spheroid attachment. Moreover, a single dose treatment with NVs significantly enhanced adhesion and spreading of mouse embryo trophoblast on fibronectin matrix. Thus, we demonstrate the functional potential of NVs in enhancing embryo implantation and highlight their rapid and scalable generation, amenable to clinical utility.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mulyoto Pangestu
- Education Program in Reproduction and Development (EPRD), Department of Obstetrics and Gynaecology, Monash Clinical School, Monash University, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Claridge B, Rai A, Lees JG, Fang H, Lim SY, Greening DW. Cardiomyocyte intercellular signalling increases oxidative stress and reprograms the global- and phospho-proteome of cardiac fibroblasts. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e125. [PMID: 38938901 PMCID: PMC11080892 DOI: 10.1002/jex2.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 06/29/2024]
Abstract
Pathological reprogramming of cardiomyocyte and fibroblast proteome landscapes drive the initiation and progression of cardiac fibrosis. Although the secretome of dysfunctional cardiomyocytes is emerging as an important driver of pathological fibroblast reprogramming, our understanding of the downstream molecular players remains limited. Here, we show that cardiac fibroblast activation (αSMA+) and oxidative stress mediated by the secretome of TGFβ-stimulated cardiomyocytes is associated with a profound reprogramming of their proteome and phosphoproteome landscape. Within the fibroblast global proteome there was a striking dysregulation of proteins implicated in extracellular matrix, protein localisation/metabolism, KEAP1-NFE2L2 pathway, lysosomes, carbohydrate metabolism, and transcriptional regulation. Kinase substrate enrichment analysis of phosphopeptides revealed potential role of kinases (CK2, CDK2, PKC, GSK3B) during this remodelling. We verified upregulated activity of casein kinase 2 (CK2) in secretome-treated fibroblasts, and pharmacological CK2 inhibitor TBB (4,5,6,7-Tetrabromobenzotriazole) significantly abrogated fibroblast activation and oxidative stress. Our data provides molecular insights into cardiomyocyte to cardiac fibroblast crosstalk, and the potential role of CK2 in regulating cardiac fibroblast activation and oxidative stress.
Collapse
Affiliation(s)
- Bethany Claridge
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | - Alin Rai
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jarmon G. Lees
- O'Brien Institute DepartmentSt Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Department of Surgery and MedicineUniversity of MelbourneMelbourneVictoriaAustralia
| | - Haoyun Fang
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Shiang Y. Lim
- O'Brien Institute DepartmentSt Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Department of Surgery and MedicineUniversity of MelbourneMelbourneVictoriaAustralia
- National Heart Research Institute SingaporeNational Heart CentreSingaporeSingapore
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - David W. Greening
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Sui C, Liao Z, Bai J, Hu D, Yue J, Yang S. Current knowledge on the role of extracellular vesicles in endometrial receptivity. Eur J Med Res 2023; 28:471. [PMID: 37899459 PMCID: PMC10614333 DOI: 10.1186/s40001-023-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023] Open
Abstract
Endometrial receptivity has been widely understood as the capacity of the endometrium to receive implantable embryos. The establishment of endometrial receptivity involves multiple biological processes including decidualization, tissue remodeling, angiogenesis, immune regulation, and oxidative metabolism. Extracellular vesicles (EVs) are lipid-bilayer-membrane nanosized vesicles mediating cell-to-cell communication. Recently, EVs and their cargo have been proven as functional factors in the establishment of endometrial receptivity. In this review, we comprehensively summarized the alteration of endometrium/embryo-derived EVs during the receptive phase and retrospected the current findings which revealed the pivotal role and potential mechanism of EVs to promote successful implantation. Furthermore, we highlight the potentiality and limitations of EVs being translated into clinical applications such as biomarkers of endometrial receptivity or reproductive therapeutic mediators, and point out the direction for further research.
Collapse
Affiliation(s)
- Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Zhiqi Liao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Jian Bai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Dan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Shulin Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
7
|
Poh QH, Rai A, Salamonsen LA, Greening DW. Omics insights into extracellular vesicles in embryo implantation and their therapeutic utility. Proteomics 2023; 23:e2200107. [PMID: 36591946 DOI: 10.1002/pmic.202200107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023]
Abstract
Implantation success relies on intricate interplay between the developing embryo and the maternal endometrium. Extracellular vesicles (EVs) represent an important player of this intercellular signalling through delivery of functional cargo (proteins and RNAs) that reprogram the target cells protein and RNA landscape. Functionally, the signalling reciprocity of endometrial and embryo EVs regulates the site of implantation, preimplantation embryo development and hatching, antioxidative activity, embryo attachment, trophoblast invasion, arterial remodelling, and immune tolerance. Omics technologies including mass spectrometry have been instrumental in dissecting EV cargo that regulate these processes as well as molecular changes in embryo and endometrium to facilitate implantation. This has also led to discovery of potential cargo in EVs in human uterine fluid (UF) and embryo spent media (ESM) of diagnostic and therapeutic value in implantation success, fertility, and pregnancy outcome. This review discusses the contribution of EVs in functional hallmarks of embryo implantation, and how the integration of various omics technologies is enabling design of EV-based diagnostic and therapeutic platforms in reproductive medicine.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|