1
|
Martinez-Salas E, Francisco-Velilla R. GEMIN5 and neurodevelopmental diseases: From functional insights to disease perception. Neural Regen Res 2026; 21:187-194. [PMID: 39819844 PMCID: PMC12094563 DOI: 10.4103/nrr.nrr-d-24-01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders.
Collapse
|
2
|
Marsili L, Mantecon M, Arrondel C, Barcia G, Assouline Z, Gribouval O, Wellesley D, Harrison V, Marijon P, Colson C, Stichelbout M, Gubler MC, Antignac C, Rotig A, Heidet L. Genome sequencing identifies RMND1 as a strong candidate gene for severe prenatal kidney failure mimicking renal tubular dysgenesis associated with hyporeninism. Pediatr Nephrol 2025:10.1007/s00467-025-06787-1. [PMID: 40366408 DOI: 10.1007/s00467-025-06787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Renal tubular dysgenesis (RTD) is a severe kidney disease characterized by poor development of proximal tubules and persistent fetal anuria leading to oligohydramnios. It can be acquired during fetal life or inherited as an autosomal recessive disease associated with bi-allelic pathogenic variants in one of the genes encoding the renin-angiotensin system (RAS) components, AGT, REN, ACE, or AGTR1. Few cases of RTD remain unsolved despite the lack of fetal cause and comprehensive screening of RAS genes. METHODS We investigated a case of unsolved RTD with low renin expression by whole genome sequencing, and then screened a series of unsolved RTD by sequencing of a targeted gene panel of genes coding mitochondrial proteins. Oxidative phosphorylation complexes were studied by SDS-PAGE and immunoblotting. RESULTS We identified a rare homozygous variant in RMND1, a gene known to be responsible for an autosomal recessive mitochondrial disease, in a case presenting with RTD-like phenotype with low renin expression but without identified RAS disease-causing variant. We demonstrate a severe reduction of combined oxidative phosphorylation complexes I and IV subunits in this case. Next, we identified another RMND1 homozygous variant in another unsolved RTD case belonging to a consanguineous family with recurrent fetal demise. CONCLUSIONS Our study shows that biallelic RMND1 pathogenic variants likely cause severe prenatal kidney disease presenting with RTD-like phenotype, and prompts to screen RMND1 in unelucidated severe fetal nephropathies to provide diagnosis and, ultimately, genetic counselling. In addition, these data confirm a still poorly understood link between RMND1-associated mitochondrial dysfunction and renin expression.
Collapse
Affiliation(s)
- Luisa Marsili
- Université de Lille, ULR7364 RADEME, Hôpital Universitaire de Lille, Service de Génétique Clinique, Lille, France
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Matthieu Mantecon
- Institut Imagine, Genetics of Mitochondrial Diseases, Université Paris Cité, Inserm UMR 1163, Paris, France
| | - Christelle Arrondel
- Institut Imagine, Laboratory of Inherited Kidney Diseases, Université Paris Cité, Inserm UMR U1163, Paris, France
| | - Giulia Barcia
- Institut Imagine, Genetics of Mitochondrial Diseases, Université Paris Cité, Inserm UMR 1163, Paris, France
- APHP-Centre, Service de Médecine Génomique Des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Zahra Assouline
- APHP-Centre, Service de Médecine Génomique Des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Olivier Gribouval
- Institut Imagine, Laboratory of Inherited Kidney Diseases, Université Paris Cité, Inserm UMR U1163, Paris, France
| | - Diana Wellesley
- Wessex Clinical Genetics Service, University Hospital Southampton, Southampton, UK
| | - Victoria Harrison
- Wessex Clinical Genetics Service, University Hospital Southampton, Southampton, UK
| | - Pierre Marijon
- Laboratoire de Biologie Médicale MultiSites SeqOIA, Paris, France
| | - Cindy Colson
- Université de Lille, ULR7364 RADEME, Hôpital Universitaire de Lille, Service de Génétique Clinique, Lille, France
| | - Morgane Stichelbout
- Centre de Biologie-Pathologie de Lille, Hôpital Universitaire de Lille, Lille, France
| | - Marie-Claire Gubler
- Institut Imagine, Laboratory of Inherited Kidney Diseases, Université Paris Cité, Inserm UMR U1163, Paris, France
| | - Corinne Antignac
- Institut Imagine, Laboratory of Inherited Kidney Diseases, Université Paris Cité, Inserm UMR U1163, Paris, France
| | - Agnes Rotig
- Institut Imagine, Genetics of Mitochondrial Diseases, Université Paris Cité, Inserm UMR 1163, Paris, France
| | - Laurence Heidet
- Institut Imagine, Laboratory of Inherited Kidney Diseases, Université Paris Cité, Inserm UMR U1163, Paris, France.
- Laboratoire de Biologie Médicale MultiSites SeqOIA, Paris, France.
- APHP-Centre, Service de Néphrologie Pédiatrique, Centre de Référence Des Maladies Rénales Héréditaires de L'Enfant Et de L'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France.
| |
Collapse
|
3
|
Martinez‐Salas E, Abellan S, Francisco‐Velilla R. Understanding GEMIN5 Interactions: From Structural and Functional Insights to Selective Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70008. [PMID: 40176294 PMCID: PMC11965781 DOI: 10.1002/wrna.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 04/04/2025]
Abstract
GEMIN5 is a predominantly cytoplasmic protein, initially identified as a member of the survival of motor neurons (SMN) complex. In addition, this abundant protein modulates diverse aspects of RNA-dependent processes, executing its functions through the formation of multi-component complexes. The modular organization of structural domains present in GEMIN5 enables this protein to perform various functions through its interaction with distinct partners. The protein is responsible for the recognition of small nuclear (sn)RNAs through its N-terminal region, and therefore for snRNP assembly. Beyond its role in spliceosome assembly, GEMIN5 regulates translation through the interaction with either RNAs or proteins. In the central region, a robust dimerization domain acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is located towards the C-terminus. Interestingly, GEMIN5 regulates the partitioning of mRNAs into polysomes, likely due to its RNA-binding capacity and its ability to bind native ribosomes. Understanding the functional and structural organization of the protein has brought an increasing interest in the last years with important implications in human disease. Patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. This review discusses recent relevant works aimed at understanding the molecular mechanisms of GEMIN5 activity in gene expression, and also the challenges to discover new functions.
Collapse
|
4
|
Medyanik AD, Anisimova PE, Kustova AO, Tarabykin VS, Kondakova EV. Developmental and Epileptic Encephalopathy: Pathogenesis of Intellectual Disability Beyond Channelopathies. Biomolecules 2025; 15:133. [PMID: 39858526 PMCID: PMC11763800 DOI: 10.3390/biom15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of neuropediatric diseases associated with epileptic seizures, severe delay or regression of psychomotor development, and cognitive and behavioral deficits. What sets DEEs apart is their complex interplay of epilepsy and developmental delay, often driven by genetic factors. These two aspects influence one another but can develop independently, creating diagnostic and therapeutic challenges. Intellectual disability is severe and complicates potential treatment. Pathogenic variants are found in 30-50% of patients with DEE. Many genes mutated in DEEs encode ion channels, causing current conduction disruptions known as channelopathies. Although channelopathies indeed make up a significant proportion of DEE cases, many other mechanisms have been identified: impaired neurogenesis, metabolic disorders, disruption of dendrite and axon growth, maintenance and synapse formation abnormalities -synaptopathies. Here, we review recent publications on non-channelopathies in DEE with an emphasis on the mechanisms linking epileptiform activity with intellectual disability. We focus on three major mechanisms of intellectual disability in DEE and describe several recently identified genes involved in the pathogenesis of DEE.
Collapse
Affiliation(s)
- Alexandra D. Medyanik
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Polina E. Anisimova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Angelina O. Kustova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| |
Collapse
|
5
|
Nelson CH, Pandey UB. Function and dysfunction of GEMIN5: understanding a novel neurodevelopmental disorder. Neural Regen Res 2024; 19:2377-2386. [PMID: 38526274 PMCID: PMC11090446 DOI: 10.4103/nrr.nrr-d-23-01614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 12/10/2023] [Indexed: 03/26/2024] Open
Abstract
The recent identification of a neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) has resulted in an increased interest in GEMIN5, a multifunction RNA-binding protein. As the largest member of the survival motor neuron complex, GEMIN5 plays a key role in the biogenesis of small nuclear ribonucleoproteins while also exhibiting translational regulatory functions as an independent protein. Although many questions remain regarding both the pathogenesis and pathophysiology of this new disorder, considerable progress has been made in the brief time since its discovery. In this review, we examine GEMIN5 within the context of NEDCAM, focusing on the structure, function, and expression of the protein specifically in regard to the disorder itself. Additionally, we explore the current animal models of NEDCAM, as well as potential molecular pathways for treatment and future directions of study. This review provides a comprehensive overview of recent advances in our understanding of this unique member of the survival motor neuron complex.
Collapse
Affiliation(s)
- Charles H. Nelson
- Department of Pediatrics, Division of Child Neurology, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Udai B. Pandey
- Department of Pediatrics, Division of Child Neurology, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Salman B, Bon E, Delers P, Cottin S, Pasho E, Ciura S, Sapaly D, Lefebvre S. Understanding the Role of the SMN Complex Component GEMIN5 and Its Functional Relationship with Demethylase KDM6B in the Flunarizine-Mediated Neuroprotection of Motor Neuron Disease Spinal Muscular Atrophy. Int J Mol Sci 2024; 25:10039. [PMID: 39337533 PMCID: PMC11431868 DOI: 10.3390/ijms251810039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Dysregulated RNA metabolism caused by SMN deficiency leads to motor neuron disease spinal muscular atrophy (SMA). Current therapies improve patient outcomes but achieve no definite cure, prompting renewed efforts to better understand disease mechanisms. The calcium channel blocker flunarizine improves motor function in Smn-deficient mice and can help uncover neuroprotective pathways. Murine motor neuron-like NSC34 cells were used to study the molecular cell-autonomous mechanism. Following RNA and protein extraction, RT-qPCR and immunodetection experiments were performed. The relationship between flunarizine mRNA targets and RNA-binding protein GEMIN5 was explored by RNA-immunoprecipitation. Flunarizine increases demethylase Kdm6b transcripts across cell cultures and mouse models. It causes, in NSC34 cells, a temporal expression of GEMIN5 and KDM6B. GEMIN5 binds to flunarizine-modulated mRNAs, including Kdm6b transcripts. Gemin5 depletion reduces Kdm6b mRNA and protein levels and hampers responses to flunarizine, including neurite extension in NSC34 cells. Moreover, flunarizine increases the axonal extension of motor neurons derived from SMA patient-induced pluripotent stem cells. Finally, immunofluorescence studies of spinal cord motor neurons in Smn-deficient mice reveal that flunarizine modulates the expression of KDM6B and its target, the motor neuron-specific transcription factor HB9, driving motor neuron maturation. Our study reveals GEMIN5 regulates Kdm6b expression with implications for motor neuron diseases and therapy.
Collapse
Affiliation(s)
- Badih Salman
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Emeline Bon
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Perrine Delers
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Steve Cottin
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Elena Pasho
- INSERM UMR1163, Institut Imagine, Université Paris Cité, F-75015 Paris, France
| | - Sorana Ciura
- INSERM UMR1163, Institut Imagine, Université Paris Cité, F-75015 Paris, France
| | - Delphine Sapaly
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Suzie Lefebvre
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
7
|
Francisco-Velilla R, Abellan S, Embarc-Buh A, Martinez-Salas E. Oligomerization regulates the interaction of Gemin5 with members of the SMN complex and the translation machinery. Cell Death Discov 2024; 10:306. [PMID: 38942768 PMCID: PMC11213948 DOI: 10.1038/s41420-024-02057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
RNA-binding proteins are multifunctional molecules impacting on multiple steps of gene regulation. Gemin5 was initially identified as a member of the survival of motor neurons (SMN) complex. The protein is organized in structural and functional domains, including a WD40 repeats domain at the N-terminal region, a tetratricopeptide repeat (TPR) dimerization module at the central region, and a non-canonical RNA-binding site at the C-terminal end. The TPR module allows the recruitment of the endogenous Gemin5 protein in living cells and the assembly of a dimer in vitro. However, the biological relevance of Gemin5 oligomerization is not known. Here we interrogated the Gemin5 interactome focusing on oligomerization-dependent or independent regions. We show that the interactors associated with oligomerization-proficient domains were primarily annotated to ribosome, splicing, translation regulation, SMN complex, and RNA stability. The presence of distinct Gemin5 protein regions in polysomes highlighted differences in translation regulation based on their oligomerization capacity. Furthermore, the association with native ribosomes and negative regulation of translation was strictly dependent on both the WD40 repeats domain and the TPR dimerization moiety, while binding with the majority of the interacting proteins, including SMN, Gemin2, and Gemin4, was determined by the dimerization module. The loss of oligomerization did not perturb the predominant cytoplasmic localization of Gemin5, reinforcing the cytoplasmic functions of this essential protein. Our work highlights a distinctive role of the Gemin5 domains for its functions in the interaction with members of the SMN complex, ribosome association, and RBP interactome.
Collapse
Affiliation(s)
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain
| | | |
Collapse
|
8
|
Zhang J, Liu X, Zhu G, Wan L, Liang Y, Li N, Huang M, Yang G. Expanding the clinical phenotype and genetic spectrum of GEMIN5 disorders: Early-infantile developmental and epileptic encephalopathies. Brain Behav 2024; 14:e3535. [PMID: 38773790 PMCID: PMC11109505 DOI: 10.1002/brb3.3535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Several biallelic truncating and missense variants of the gem nuclear organelle-associated protein 5 (GEMIN5) gene have been reported to cause neurodevelopmental disorders characterized by cerebellar atrophy, intellectual disability, and motor dysfunction. However, the association between biallelic GEMIN5 variants and early-infantile developmental and epileptic encephalopathies (EIDEEs) has not been reported. PURPOSE This study aimed to expand the phenotypic spectrum of GEMIN5 and explore the correlations between epilepsy and molecular sub-regional locations. METHODS We performed whole-exome sequencing in two patients with EIDEE with unexplained etiologies. The damaging effects of variants were predicted using multiple in silico tools and modeling. All reported patients with GEMIN5 pathogenic variants and detailed neurological phenotypes were analyzed to evaluate the genotype-phenotype relationship. RESULTS Novel biallelic GEMIN5 variants were identified in two unrelated female patients with EIDEE, including a frameshift variant (Hg19, chr5:154284147-154284148delCT: NM_015465: c.2551_c.2552delCT: p.(Leu851fs*30)), a nonsense mutation (Hg19, chr5:154299603-154299603delTinsAGA: NM_015465: c.1523delTinsAGA: p.(Leu508*)), and two missense variants (Hg19, chr5:154282663T > A: NM_015465: c.2705T > A: p.(Leu902Gln) and Hg19, chr5:154281002C > G: NM_015465: c.2911C > G: p.(Gln971Glu)), which were inherited from asymptomatic parents and predicted to be damaging or probably damaging using in silico tools. Except p.Leu508*, all these mutations are located in tetratricopeptide repeat (TPR) domain. Our two female patients presented with seizures less than 1 month after birth, followed by clusters of spasms. Brain magnetic resonance imaging suggests dysgenesis of the corpus callosum and cerebellar hypoplasia. Video electroencephalogram showed suppression-bursts. Through a literature review, we found 5 published papers reporting 48 patients with biallelic variants in GEMIN5. Eight of 48 patients have epilepsy, and 5 patients started before 1 year old, which reminds us of the relevance between GEMIN5 variants and EIDEE. Further analysis of the 49 GEMIN5 variants in those 50 patients demonstrated that variants in TPR-like domain or RBS domain were more likely to be associated with epilepsy. CONCLUSIONS We found novel biallelic variants of GEMIN5 in two individuals with EIDEE and expanded the clinical phenotypes of GEMIN5 variants. It is suggested that the GEMIN5 gene should be added to the EIDEE gene panel to aid in the clinical diagnosis of EIDEE and to help determine patient prognosis.
Collapse
Affiliation(s)
- Jing Zhang
- Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical Center of Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Xinting Liu
- Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical Center of Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Gang Zhu
- Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical Center of Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Lin Wan
- Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical Center of Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Yan Liang
- Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical Center of Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Nannan Li
- Aegicare (Shenzhen) Technology Co., LtdShenzhenChina
| | - Mingwei Huang
- Aegicare (Shenzhen) Technology Co., LtdShenzhenChina
| | - Guang Yang
- Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical Center of Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Cascajo-Almenara MV, Juliá-Palacios N, Urreizti R, Sánchez-Cuesta A, Fernández-Ayala DM, García-Díaz E, Oliva C, O Callaghan MDM, Paredes-Fuentes AJ, Moreno-Lozano PJ, Muchart J, Nascimento A, Ortez CI, Natera-de Benito D, Pineda M, Rivera N, Fortuna TR, Rajan DS, Navas P, Salviati L, Palau F, Yubero D, García-Cazorla A, Pandey UB, Santos-Ocaña C, Artuch R. Mutations of GEMIN5 are associated with coenzyme Q 10 deficiency: long-term follow-up after treatment. Eur J Hum Genet 2024; 32:426-434. [PMID: 38316953 PMCID: PMC10999423 DOI: 10.1038/s41431-023-01526-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
GEMIN5 exerts key biological functions regulating pre-mRNAs intron removal to generate mature mRNAs. A series of patients were reported harboring mutations in GEMIN5. No treatments are currently available for this disease. We treated two of these patients with oral Coenzyme Q10 (CoQ10), which resulted in neurological improvements, although MRI abnormalities remained. Whole Exome Sequencing demonstrated compound heterozygosity at the GEMIN5 gene in both cases: Case one: p.Lys742* and p.Arg1016Cys; Case two: p.Arg1016Cys and p.Ser411Hisfs*6. Functional studies in fibroblasts revealed a decrease in CoQ10 biosynthesis compared to controls. Supplementation with exogenous CoQ10 restored it to control intracellular CoQ10 levels. Mitochondrial function was compromised, as indicated by the decrease in oxygen consumption, restored by CoQ10 supplementation. Transcriptomic analysis of GEMIN5 patients compared with controls showed general repression of genes involved in CoQ10 biosynthesis. In the rigor mortis defective flies, CoQ10 levels were decreased, and CoQ10 supplementation led to an improvement in the adult climbing assay performance, a reduction in the number of motionless flies, and partial restoration of survival. Overall, we report the association between GEMIN5 dysfunction and CoQ10 deficiency for the first time. This association opens the possibility of oral CoQ10 therapy, which is safe and has no observed side effects after long-term therapy.
Collapse
Affiliation(s)
- Marivi V Cascajo-Almenara
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Natalia Juliá-Palacios
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Roser Urreizti
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Ana Sánchez-Cuesta
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniel M Fernández-Ayala
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena García-Díaz
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Clara Oliva
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Maria Del Mar O Callaghan
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, 08028, Barcelona, Spain
| | - Pedro J Moreno-Lozano
- Internal Medicine Department, Clinic Hospital and University of Barcelona, 08036, Barcelona, Spain
| | - Jordi Muchart
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Andres Nascimento
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Carlos I Ortez
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Daniel Natera-de Benito
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Mercedes Pineda
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Noelia Rivera
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Tyler R Fortuna
- Department of Pediatrics, Childrens Hospital of Pittsburgh and Children's Neuroscience Institute, University of Pittsburgh Medical Center and Children's Hospital of Pittsburgh, 15224, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Childrens Hospital of Pittsburgh and Children's Neuroscience Institute, University of Pittsburgh Medical Center and Children's Hospital of Pittsburgh, 15224, Pittsburgh, PA, USA
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, Padua University, 35128, Padua, Italy
| | - Francesc Palau
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
- Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, 08036, Barcelona, Spain
| | - Delia Yubero
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Angels García-Cazorla
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Udai Bhan Pandey
- Department of Pediatrics, Childrens Hospital of Pittsburgh and Children's Neuroscience Institute, University of Pittsburgh Medical Center and Children's Hospital of Pittsburgh, 15224, Pittsburgh, PA, USA.
| | - Carlos Santos-Ocaña
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013, Sevilla, Spain.
| | - Rafael Artuch
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain.
| |
Collapse
|
10
|
Francisco-Velilla R, Abellan S, Garcia-Martin JA, Oliveros JC, Martinez-Salas E. Alternative splicing events driven by altered levels of GEMIN5 undergo translation. RNA Biol 2024; 21:23-34. [PMID: 39194147 PMCID: PMC11364065 DOI: 10.1080/15476286.2024.2394755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
GEMIN5 is a multifunctional protein involved in various aspects of RNA biology, including biogenesis of snRNPs and translation control. Reduced levels of GEMIN5 confer a differential translation to selective groups of mRNAs, and biallelic variants reducing protein stability or inducing structural conformational changes are associated with neurological disorders. Here, we show that upregulation of GEMIN5 can be detrimental as it modifies the steady state of mRNAs and enhances alternative splicing (AS) events of genes involved in a broad range of cellular processes. RNA-Seq identification of the mRNAs associated with polysomes in cells with high levels of GEMIN5 revealed that a significant fraction of the differential AS events undergo translation. The association of mRNAs with polysomes was dependent on the type of AS event, being more frequent in the case of exon skipping. However, there were no major differences in the percentage of genes showing open-reading frame disruption. Importantly, differential AS events in mRNAs engaged in polysomes, eventually rendering non-functional proteins, encode factors controlling cell growth. The broad range of mRNAs comprising AS events engaged in polysomes upon GEMIN5 upregulation supports the notion that this multifunctional protein has evolved as a gene expression balancer, consistent with its dual role as a member of the SMN complex and as a modulator of protein synthesis, ultimately impinging on cell homoeostasis.
Collapse
Affiliation(s)
| | - Salvador Abellan
- Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnologia. CSIC, Madrid, Spain
| | | |
Collapse
|
11
|
Zhang X, Guo Y, Xu L, Wang Y, Sheng G, Gao F, Yuan Z. Novel compound heterozygous mutation and phenotype in the tetratricopeptide repeat-like domain of the GEMIN5 gene in two Chinese families. J Hum Genet 2023; 68:789-792. [PMID: 37479787 DOI: 10.1038/s10038-023-01184-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND GEMIN5 is an RNA-binding protein that regulates multiple molecular functions, including splicing, localisation, translation, and mRNA stability. GEMIN5 mutations present a syndrome centred on cerebellar dysplasia, including motor dysfunction, developmental delay, cerebellar atrophy, and hypotonia. CASES We report three patients from two families with novel compound heterozygous mutations in the tetratricopeptide repeat-like domain of the GEMIN5 gene who presented with motor dysfunction, developmental delay, and ataxia syndrome. Novel variants were identified: c.2551_c.2552delCT (Leu851Glufs*30) and c.2911 C > G (Gln971Glu) in Family 1, and c.3287 T > C (Leu1096Pro) and c.2882 G > C (Trp961 Ser) in Family 2, which were inherited from their parents. Moreover, infantile spasms syndrome(ISs) was diagnosed in the family. CONCLUSION We report the first case of ISs caused by GEMIN5 gene mutations. Our cases expand on GEMIN5 variants and neurological phenotypes, reinforcing the crucial impact of tetratricopeptide repeat-like domain variants in the GEMIN5 gene.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
| | - Yanzhao Guo
- Department of Rehabilitation, Xi'an TCM Hospital of Encephalopathy, Xi'an, 710032, China.
| | - Lu Xu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
| | - Yilong Wang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
| | - Guoxia Sheng
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
| | - Feng Gao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
| | - Zhefeng Yuan
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China.
| |
Collapse
|
12
|
Fortuna TR, Kour S, Chimata AV, Muiños-Bühl A, Anderson EN, Nelson Iv CH, Ward C, Chauhan O, O'Brien C, Rajasundaram D, Rajan DS, Wirth B, Singh A, Pandey UB. SMN regulates GEMIN5 expression and acts as a modifier of GEMIN5-mediated neurodegeneration. Acta Neuropathol 2023; 146:477-498. [PMID: 37369805 PMCID: PMC11348892 DOI: 10.1007/s00401-023-02607-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
GEMIN5 is essential for core assembly of small nuclear Ribonucleoproteins (snRNPs), the building blocks of spliceosome formation. Loss-of-function mutations in GEMIN5 lead to a neurodevelopmental syndrome among patients presenting with developmental delay, motor dysfunction, and cerebellar atrophy by perturbing SMN complex protein expression and assembly. Currently, molecular determinants of GEMIN5-mediated disease have yet to be explored. Here, we identified SMN as a genetic suppressor of GEMIN5-mediated neurodegeneration in vivo. We discovered that an increase in SMN expression by either SMN gene therapy replacement or the antisense oligonucleotide (ASO), Nusinersen, significantly upregulated the endogenous levels of GEMIN5 in mammalian cells and mutant GEMIN5-derived iPSC neurons. Further, we identified a strong functional association between the expression patterns of SMN and GEMIN5 in patient Spinal Muscular Atrophy (SMA)-derived motor neurons harboring loss-of-function mutations in the SMN gene. Interestingly, SMN binds to the C-terminus of GEMIN5 and requires the Tudor domain for GEMIN5 binding and expression regulation. Finally, we show that SMN upregulation ameliorates defective snRNP biogenesis and alternative splicing defects caused by loss of GEMIN5 in iPSC neurons and in vivo. Collectively, these studies indicate that SMN acts as a regulator of GEMIN5 expression and neuropathologies.
Collapse
Affiliation(s)
- Tyler R Fortuna
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Anixa Muiños-Bühl
- Institute of Human Genetics, Center for Molecular Medicine, Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Charlie H Nelson Iv
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Caroline Ward
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Om Chauhan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Casey O'Brien
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine, Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
A Biallelic Truncating Variant in the TPR Domain of GEMIN5 Associated with Intellectual Disability and Cerebral Atrophy. Genes (Basel) 2023; 14:genes14030707. [PMID: 36980979 PMCID: PMC10048441 DOI: 10.3390/genes14030707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
GEMIN5 is a multifunctional RNA-binding protein required for the assembly of survival motor neurons. Several bi-allelic truncating and missense variants in this gene are reported to cause a neurodevelopmental disorder characterized by cerebellar atrophy, intellectual disability (ID), and motor dysfunction. Whole exome sequencing of a Pakistani consanguineous family with three brothers affected by ID, cerebral atrophy, mobility, and speech impairment revealed a novel homozygous 3bp-deletion NM_015465.5:c.3162_3164del that leads to the loss of NM_015465.5 (NP_056280.2):p. (Asp1054_Ala1055delinsGlu) amino acid in one of the α-helixes of the tetratricopeptide repeats of GEMIN5. In silico 3D representations of the GEMIN5 dimerization domain show that this variant likely affects the orientation of the downstream sidechains out of the helix axis, which would affect the packing with neighboring helices. The phenotype of all affected siblings overlaps well with previously reported patients, suggesting that NM_015465.5: c.3162_3164del (NP_056280.2):p. (Asp1054_Ala1055delinsGlu) is a novel GEMIN5 pathogenic variant. Overall, our data expands the molecular and clinical phenotype of the recently described neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) syndrome.
Collapse
|
14
|
Francisco-Velilla R, Embarc-Buh A, Abellan S, del Caño-Ochoa F, Ramón-Maiques S, Martinez-Salas E. Phosphorylation of T897 in the dimerization domain of Gemin5 modulates protein interactions and translation regulation. Comput Struct Biotechnol J 2022; 20:6182-6191. [DOI: 10.1016/j.csbj.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
15
|
Structural basis for Gemin5 decamer-mediated mRNA binding. Nat Commun 2022; 13:5166. [PMID: 36056043 PMCID: PMC9440017 DOI: 10.1038/s41467-022-32883-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gemin5 in the Survival Motor Neuron (SMN) complex serves as the RNA-binding protein to deliver small nuclear RNAs (snRNAs) to the small nuclear ribonucleoprotein Sm complex via its N-terminal WD40 domain. Additionally, the C-terminal region plays an important role in regulating RNA translation by directly binding to viral RNAs and cellular mRNAs. Here, we present the three-dimensional structure of the Gemin5 C-terminal region, which adopts a homodecamer architecture comprised of a dimer of pentamers. By structural analysis, mutagenesis, and RNA-binding assays, we find that the intact pentamer/decamer is critical for the Gemin5 C-terminal region to bind cognate RNA ligands and to regulate mRNA translation. The Gemin5 high-order architecture is assembled via pentamerization, allowing binding to RNA ligands in a coordinated manner. We propose a model depicting the regulatory role of Gemin5 in selective RNA binding and translation. Therefore, our work provides insights into the SMN complex-independent function of Gemin5. Structural biology, complemented by biochemistry experiments and RNA-binding assays show that the Gemin5 C-terminal region adopts a decamer architecture. Gemin5 decamerization is essential for its role in regulating mRNA translation.
Collapse
|
16
|
Embarc-Buh A, Francisco-Velilla R, Garcia-Martin JA, Abellan S, Ramajo J, Martinez-Salas E. Gemin5-dependent RNA association with polysomes enables selective translation of ribosomal and histone mRNAs. Cell Mol Life Sci 2022; 79:490. [PMID: 35987821 PMCID: PMC9392717 DOI: 10.1007/s00018-022-04519-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
Abstract
AbstractSelective translation allows to orchestrate the expression of specific proteins in response to different signals through the concerted action of cis-acting elements and RNA-binding proteins (RBPs). Gemin5 is a ubiquitous RBP involved in snRNP assembly. In addition, Gemin5 regulates translation of different mRNAs through apparently opposite mechanisms of action. Here, we investigated the differential function of Gemin5 in translation by identifying at a genome-wide scale the mRNAs associated with polysomes. Among the mRNAs showing Gemin5-dependent enrichment in polysomal fractions, we identified a selective enhancement of specific transcripts. Comparison of the targets previously identified by CLIP methodologies with the polysome-associated transcripts revealed that only a fraction of the targets was enriched in polysomes. Two different subsets of these mRNAs carry unique cis-acting regulatory elements, the 5’ terminal oligopyrimidine tracts (5’TOP) and the histone stem-loop (hSL) structure at the 3’ end, respectively, encoding ribosomal proteins and histones. RNA-immunoprecipitation (RIP) showed that ribosomal and histone mRNAs coprecipitate with Gemin5. Furthermore, disruption of the TOP motif impaired Gemin5-RNA interaction, and functional analysis showed that Gemin5 stimulates translation of mRNA reporters bearing an intact TOP motif. Likewise, Gemin5 enhanced hSL-dependent mRNA translation. Thus, Gemin5 promotes polysome association of only a subset of its targets, and as a consequence, it favors translation of the ribosomal and the histone mRNAs. Together, the results presented here unveil Gemin5 as a novel translation regulator of mRNA subsets encoding proteins involved in fundamental cellular processes.
Collapse
|
17
|
Francisco-Velilla R, Embarc-Buh A, Del Caño-Ochoa F, Abellan S, Vilar M, Alvarez S, Fernandez-Jaen A, Kour S, Rajan DS, Pandey UB, Ramón-Maiques S, Martinez-Salas E. Functional and structural deficiencies of Gemin5 variants associated with neurological disorders. Life Sci Alliance 2022; 5:5/7/e202201403. [PMID: 35393353 PMCID: PMC8989681 DOI: 10.26508/lsa.202201403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction of RNA-binding proteins is often linked to a wide range of human disease, particularly with neurological conditions. Gemin5 is a member of the survival of the motor neurons (SMN) complex, a ribosome-binding protein and a translation reprogramming factor. Recently, pathogenic mutations in Gemin5 have been reported, but the functional consequences of these variants remain elusive. Here, we report functional and structural deficiencies associated with compound heterozygosity variants within the Gemin5 gene found in patients with neurodevelopmental disorders. These clinical variants are located in key domains of Gemin5, the tetratricopeptide repeat (TPR)-like dimerization module and the noncanonical RNA-binding site 1 (RBS1). We show that the TPR-like variants disrupt protein dimerization, whereas the RBS1 variant confers protein instability. All mutants are defective in the interaction with protein networks involved in translation and RNA-driven pathways. Importantly, the TPR-like variants fail to associate with native ribosomes, hampering its involvement in translation control and establishing a functional difference with the wild-type protein. Our study provides insights into the molecular basis of disease associated with malfunction of the Gemin5 protein.
Collapse
Affiliation(s)
- Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Francisco Del Caño-Ochoa
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Sara Alvarez
- New Integrated Medical Genetics (NIMGENETICS), Madrid, Spain
| | - Alberto Fernandez-Jaen
- Neuropediatric Department, Hospital Universitario Quirónsalud, Madrid, Spain.,School of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Santiago Ramón-Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|