1
|
Tateiwa D, Nishida M, Kodama J, Hirai H, Nakagawa S, Ukon Y, Takeyama K, Yamamori N, Hirano K, Ikuta M, Kitahara T, Furuichi T, Bun M, Okada S, Kaito T. Development of a novel rat long-bone nonunion model and efficacy evaluation of a prostaglandin EP4 selective agonist (AKDS001) combined with iliac bone grafting. Bone Joint Res 2025; 14:166-175. [PMID: 40028789 PMCID: PMC11873957 DOI: 10.1302/2046-3758.143.bjr-2024-0220.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Aims Nonunion occurs when a fracture fails to heal permanently, often necessitating surgical intervention to stimulate the bone healing response. Current animal models of long-bone nonunion do not adequately replicate human pathological conditions. This study was intended as a preliminary investigation of a novel rat nonunion model using a two-stage surgical intervention, and to evaluate the efficacy of a selective prostaglandin E2 receptor 4 agonist (AKDS001) as a novel nonunion therapeutic agent compared with existing treatments. Methods Initially, Sprague-Dawley rats underwent intramedullary Kirschner wire (K-wire) fixation of a femoral fracture with the interposition of a 2 mm-thick silicon disc. After three weeks, the silicon disc was removed, and the intramedullary K-wire was replaced with plate fixation while maintaining the 2 mm defect. Contrary to the control group (1) that received no treatment, the following therapeutic interventions were performed at injury sites after freshening: (2) freshening group: no grafting; (3) iliac bone (IB) group: IB grafting; (4) AKDS group: AKDS001-loaded microspheres (MS) combined with IB (0.75 mg/ml); and (5) bone morphogenetic protein (BMP) group: grafting of a BMP-2-loaded collagen sponge (10 μg; 0.10 mg/ml). After six weeks, micro-CT (μCT) and histological analysis was performed. Results In the control group, the radiological union rate was 0%, and histological findings showed that fracture sites comprised fibrous scar tissue, resembling the histology of human nonunion. The union rates in the freshening, IB, AKDS, and BMP groups were 16.7%, 0%, 62.5%, and 50.0%, respectively. The AKDS group demonstrated a significantly higher union rate than the IB group (p = 0.026). μCT and histological analysis indicated that the quality of newly formed bone was superior in the AKDS group than in the BMP group. Conclusion We developed a novel long-bone nonunion model. The co-therapy of AKDS001-MS and IB grafting presents a promising new treatment for nonunion.
Collapse
Affiliation(s)
- Daisuke Tateiwa
- Department of Orthopaedic Surgery, Osaka International Medical and Science Center, Osaka, Japan
| | - Masahiro Nishida
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Joe Kodama
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hiromasa Hirai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinichi Nakagawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichiro Ukon
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiro Takeyama
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Natsumi Yamamori
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kyoko Hirano
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Masato Ikuta
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Kitahara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuya Furuichi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayuki Bun
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka Rosai Hospital, Sakai, Japan
| |
Collapse
|
2
|
Yimiti D, Uchibe K, Toriyama M, Hayashi Y, Ikuta Y, Nakasa T, Akiyama H, Watanabe H, Kondoh G, Takimoto A, Shukunami C, Adachi N, Miyaki S. CD1530, selective RARγ agonist, facilitates Achilles tendon healing by modulating the healing environment including less chondrification in a mouse model. J Orthop Res 2025; 43:273-284. [PMID: 39513493 DOI: 10.1002/jor.26006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024]
Abstract
Heterotopic ossification (HO) in Achilles tendon often arises due to endochondral ossification during the healing process following trauma. Retinoic acid receptor γ (RARγ) plays a critical role in this phenomenon. This study aims to elucidate the therapeutic effects of CD1530, an RARγ selective agonist, along with the contributing cells, in Achilles tendon healing, utilizing a cell lineage tracing system. Local injection of CD1530 facilitated histological tendon healing by inhibiting chondrification in a mouse Achilles rupture model. Resident Scleraxis (Scx)+ cells in Achilles tendon were not found to be actively involved in HO or tendon healing following injury. Instead, these processes were primarily driven by tendon stem/progenitor cells (TSPC)-like cells. Furthermore, an in vitro assay revealed that CD1530 attenuated inflammation in injured Achilles tendon-derived tendon fibroblasts (iATF) and inhibited the chondrogenesis of iATF. This dual effect suggests the potential of CD1530 in effectively modulating the healing environment during tendon healing. Together, the present study demonstrated that the local administration of CD1530 accelerated tendon healing by modulating the healing environment, including reducing chondrification via targeting TSPC-like cells in a mouse Achilles tendon rupture model. These results suggest that CD1530 may have the potential to be a novel tendon therapy that offers benefits via the inhibition of chondrogenesis.
Collapse
Affiliation(s)
- Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenta Uchibe
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Minoru Toriyama
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Hayashi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Musculoskeletal Traumatology and Reconstructive Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences (LIME), Kyoto University, Kyoto, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences (LIME), Kyoto University, Kyoto, Japan
| | - Aki Takimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
3
|
Furuichi T, Hirai H, Kitahara T, Bun M, Ikuta M, Ukon Y, Furuya M, Oreffo RO, Janeczek AA, Dawson JI, Okada S, Kaito T. Nanoclay gels attenuate BMP2-associated inflammation and promote chondrogenesis to enhance BMP2-spinal fusion. Bioact Mater 2025; 44:474-487. [PMID: 39559426 PMCID: PMC11570687 DOI: 10.1016/j.bioactmat.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
Bone morphogenetic protein 2 (BMP2) is clinically applied for treating intractable fractures and promoting spinal fusion because of its osteogenic potency. However, adverse effects following the release of supraphysiological doses of BMP2 from collagen carriers are widely reported. Nanoclay gel (NC) is attracting attention as a biomaterial, given the potential for localized efficacy of administered agents. However, the efficacy and mechanism of action of NC/BMP2 remain unclear. This study explored the efficacy of NC as a BMP2 carrier in bone regeneration and the enhancement mechanism. Subfascial implantation of NC containing BMP2 elicited superior bone formation compared with collagen sponge (CS). Cartilage was uniformly formed inside the NC, whereas CS formed cartilage only on the perimeter. Additionally, CS induced a dose-dependent inflammatory response around the implantation site, whereas NC induced a minor response, and inflammatory cells were observed inside the NC. In a rat spinal fusion model, NC promoted high-quality bony fusion compared to CS. In vitro, NC enhanced chondrogenic and osteogenic differentiation of hBMSCs and ATDC5 cells while inhibiting osteoclastogenesis. Overall, NC/BMP2 facilitates spatially controlled, high-quality endochondral bone formation without BMP2-induced inflammation and promotes high-density new bone, functioning as a next-generation BMP2 carrier.
Collapse
Affiliation(s)
- Takuya Furuichi
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiromasa Hirai
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Kitahara
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masayuki Bun
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masato Ikuta
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Ukon
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masayuki Furuya
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Richard O.C. Oreffo
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Agnieszka A. Janeczek
- Renovos Biologics Limited, 2 Venture Road, University of Southampton Science Park, Southampton, SO16 7NP, United Kingdom
| | - Jonathan I. Dawson
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Seiji Okada
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Ben Patel R, Barnwal SK, Saleh M A AM, Francis D. Leveraging nuclear receptor mediated transcriptional signaling for drug discovery: Historical insights and current advances. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:191-269. [PMID: 39843136 DOI: 10.1016/bs.apcsb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level. These receptors are involved in a wide range of pathological conditions, including cancer, metabolic disorders, chronic inflammatory diseases, and immune system-related disorders. Modulation of NR function through targeted drugs has shown therapeutic benefits in treating such conditions. NR-targeted drugs, which either completely or selectively activate or block receptor function, represent a significant class of clinically valuable therapeutics. However, the pathways of NR-mediated gene expression and the resulting physiological effects are complex, involving crosstalk between various biomolecular components. As a result, NR-targeted drug discovery is challenging. With improved understanding of how NRs regulate physiological functions and deeper insights into their molecular structure, the process of NR-targeted drug discovery has evolved. While many traditional NR-targeting drugs are associated with side effects of varying severity, new drug candidates are being designed to minimize these adverse effects. Given that NR activity varies according to the tissue in which they are expressed and the specific isoform that is activated or repressed, achieving selectivity in targeting specific tissues and isoform classes may help reduce systemic side effects. In a recent breakthrough, the isoform-selective, hepato-targeted thyroid hormone-β agonist, Resmetirom (marketed as Rezdiffra), was approved for the treatment of non-alcoholic steatohepatitis. This chapter explores the structural and mechanistic principles guiding NR-targeted drug discovery and provides insights into recent developments in this field.
Collapse
Affiliation(s)
- Riya Ben Patel
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Surbhi Kumari Barnwal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arabi Mohammed Saleh M A
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| |
Collapse
|
5
|
Tateiwa D, Iwamoto M, Kodama J, Ukon Y, Hirai H, Ikuta M, Kitahara T, Furuichi T, Bun M, Otsuru S, Okada S, Kaito T. A synthetic retinoic acid receptor γ antagonist (7C)-loaded nanoparticle enhances bone morphogenetic protein-induced bone regeneration in a rat spinal fusion model. Spine J 2024; 24:899-908. [PMID: 38092193 PMCID: PMC11610515 DOI: 10.1016/j.spinee.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND CONTEXT Bone morphogenetic proteins (BMPs) have potent osteoinductivity and have been applied clinically for challenging musculoskeletal conditions. However, the supraphysiological doses of BMPs used in clinical settings cause various side effects that prevent widespread use, and therefore the BMP dosage needs to be reduced. PURPOSE To address this problem, we synthesized 7C, a retinoic acid receptor γ antagonist-loaded nanoparticle (NP), and investigated its potential application in BMP-based bone regeneration therapy using a rat spinal fusion model. STUDY DESIGN An experimental animal study. METHODS Fifty-three male 8-week-old Sprague-Dawley rats underwent posterolateral spinal fusion and were divided into the following five treatment groups: (1) no recombinant human (rh)BMP-2 and blank-NP (Control), (2) no rhBMP-2 and 1 μg 7C-NP (7C group), (3) low-dose rhBMP-2 (0.5 μg) and 1 μg blank-NP (L-BMP group), (4) low-dose rhBMP-2 (0.5 μg) and 1 μg 7C-NP (L-BMP + 7C group), and (5) high-dose rhBMP-2 (5.0 μg) and 1 μg blank-NP (H-BMP group). Micro-computed tomography and histologic analysis were performed 2 and 6 weeks after the surgery. RESULTS The spinal fusion rates of the Control and 7C groups were both 0%, and those of the L-BMP, L-BMP + 7C, and H-BMP groups were 55.6%, 94.4%, and 100%, respectively. The L-BMP + 7C group markedly promoted cartilaginous tissue formation during BMP-induced endochondral bone formation that resulted in a significantly better spinal fusion rate and bone formation than in the L-BMP group. Although spinal fusion was slower in the L-BMP + 7C group, the L-BMP + 7C group formed a spinal fusion mass with better bone quality than the spinal fusion mass in the H-BMP group. CONCLUSIONS The combined use of 7C-NP with rhBMP-2 in a rat posterolateral lumbar fusion model increased spinal fusion rate and new bone volume without deteriorating the quality of newly formed bone. CLINICAL SIGNIFICANCE 7C-NP potentiates BMP-2-induced bone regeneration and has the potential for efficient bone regeneration with low-dose BMP-2, which can reduce the dose-dependent side effects of BMP-2 in clinical settings.
Collapse
Affiliation(s)
- Daisuke Tateiwa
- Department of Orthopaedic Surgery, Osaka General Medical Center, 3-1-56, Mandaihigashi, Sumiyoshi, Osaka, Japan
| | - Masahiro Iwamoto
- Department of Orthopaedic, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, USA
| | - Joe Kodama
- Department of Orthopaedic, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, USA
| | - Yuichiro Ukon
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromasa Hirai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masato Ikuta
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kitahara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Furuichi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayuki Bun
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoru Otsuru
- Department of Orthopaedic, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, USA
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
Kim SH, Choi HJ, Lee SM, Yoon DS, Son CN. Effect of recombinant human bone morphogenetic protein-2 and osteoprotegerin-Fc in MC3T3-E1 cells. JOURNAL OF RHEUMATIC DISEASES 2024; 31:79-85. [PMID: 38559798 PMCID: PMC10973356 DOI: 10.4078/jrd.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/06/2023] [Accepted: 12/23/2023] [Indexed: 04/04/2024]
Abstract
Objective We compared the osteoblastogenesis by serially administrating recombinant human bone morphogenetic protein-2 (rhBMP-2) and osteoprotegerin-immunoglobulin Fc segment complex (OPG-Fc). Methods The MC3T3-E1 preosteoblast cell line was differentiated for 1, 3, and 7 days with a treatment of OPG-Fc in 10~200 ng/mL concentration and the cell viability was evaluated by Cell Counting Kit-8 analysis. The level of differentiation from MC3T3-E1 cells to osteoblasts was determined by alkaline phosphatase activity. The level of runt domain-containing transcription factor 2 (Runx2) and osteopontin (OPN) manifestation, involved in osteoblast differentiation, was examined by real-time polymerase chain reaction and western blotting. Results During MC3T3-E1 cell differentiation, the differentiation level was high with 1-day treatment using 100 ng/mL OPG-Fc. The treatment with 50 ng/mL rhBMP-2 for 7 days, followed by 1-day treatment with 100 ng/mL OPG-Fc produced the highest differentiation level, which was approximately 5.3 times that of the control group (p<0.05). The expression of Runx2 mRNA significantly increased, reaching 2.5 times the level of the control group under the condition of 7-day treatment with rhBMP-2 and 1-day treatment with OPG-Fc (p<0.001). The expression of Runx2 protein significantly increased to approximately 5.7 times that of the control group under the condition of 7-day treatment with rhBMP-2, followed by 1-day treatment with OPG-Fc (p<0.01). The expression of OPN protein showed no change from that of the control group under various conditions of rhBMP-2 and OPG-Fc combinations. Conclusion These results imply that the treating preosteoblasts with rhBMP-2 first and then with OPG-Fc increased osteoblast differentiation efficacy.
Collapse
Affiliation(s)
- Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Hye-Jung Choi
- Department of Emergency Medical Technology, Gyeongbuk Provincial College, Yecheon, Korea
| | - Sang-Min Lee
- Department of Emergency Medical Technology, Gyeongbuk Provincial College, Yecheon, Korea
| | - Dae Sung Yoon
- Department of Biomedical Engineering, Korea University College of Health Science, Seoul, Korea
| | - Chang-Nam Son
- Department of Rheumatology, Eulji Rheumatology Research Institute, Eulji University School of Medicine, Uijeongbu, Korea
| |
Collapse
|
7
|
Goshima A, Etani Y, Hirao M, Yamakawa S, Okamura G, Miyama A, Takami K, Miura T, Fukuda Y, Kurihara T, Ochiai N, Oyama S, Otani S, Tamaki M, Ishibashi T, Tomita T, Kanamoto T, Nakata K, Okada S, Ebina K. Basic fibroblast growth factor promotes meniscus regeneration through the cultivation of synovial mesenchymal stem cells via the CXCL6-CXCR2 pathway. Osteoarthritis Cartilage 2023; 31:1581-1593. [PMID: 37562758 DOI: 10.1016/j.joca.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE To investigate the efficacy of basic fibroblast growth factor (bFGF) in promoting meniscus regeneration by cultivating synovial mesenchymal stem cells (SMSCs) and to validate the underlying mechanisms. METHODS Human SMSCs were collected from patients with osteoarthritis. Eight-week-old nude rats underwent hemi-meniscectomy, and SMSCs in pellet form, either with or without bFGF (1.0 × 106 cells per pellet), were implanted at the site of meniscus defects. Rats were divided into the control (no transplantation), FGF (-) (pellet without bFGF), and FGF (+) (pellet with bFGF) groups. Different examinations, including assessment of the regenerated meniscus area, histological scoring of the regenerated meniscus and cartilage, meniscus indentation test, and immunohistochemistry analysis, were performed at 4 and 8 weeks after surgery. RESULTS Transplanted SMSCs adhered to the regenerative meniscus. Compared with the control group, the FGF (+) group had larger regenerated meniscus areas, superior histological scores of the meniscus and cartilage, and better meniscus mechanical properties. RNA sequencing of SMSCs revealed that the gene expression of chemokines that bind to CXCR2 was upregulated by bFGF. Furthermore, conditioned medium derived from SMSCs cultivated with bFGF exhibited enhanced cell migration, proliferation, and chondrogenic differentiation, which were specifically inhibited by CXCR2 or CXCL6 inhibitors. CONCLUSION SMSCs cultured with bFGF promoted the expression of CXCL6. This mechanism may enhance cell migration, proliferation, and chondrogenic differentiation, thereby resulting in superior meniscus regeneration and cartilage preservation.
Collapse
Affiliation(s)
- Atsushi Goshima
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuki Etani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Makoto Hirao
- Department of Orthopaedic Surgery, National Hospital Organization, Osaka Minami Medical Center, 2-1 Kidohigashi-machi, Kawachinagano, Osaka 586-8521, Japan
| | - Satoshi Yamakawa
- Department of Sports Medical Biomechanics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Gensuke Okamura
- Department of Orthopaedic Surgery, Osaka Rosai Hospital, 1179-3 Nagasone-cho, Kita-ku, Sakai 591-8025, Japan
| | - Akira Miyama
- Department of Orthopaedic Surgery, Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Osaka 560-8552, Japan
| | - Kenji Takami
- Department of Orthopedic Surgery, Nippon Life Hospital, 2-1-54 Enokojima, Nishi-ku, Osaka 550-0006, Japan
| | - Taihei Miura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuji Fukuda
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takuya Kurihara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nagahiro Ochiai
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shohei Oyama
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shunya Otani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masashi Tamaki
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Teruya Ishibashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Tomita
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, 1-26-16, Nankou-kita, Suminoe, Osaka, Japan
| | - Takashi Kanamoto
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ken Nakata
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ebina
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Hanai H, Hart DA, Jacob G, Shimomura K, Ando W, Yoshioka Y, Ochiya T, Nakagawa S, Nakamura M, Okada S, Nakamura N. Small extracellular vesicles derived from human adipose-derived mesenchymal stromal cells cultured in a new chemically-defined contaminate-free media exhibit enhanced biological and therapeutic effects on human chondrocytes in vitro and in a mouse osteoarthritis model. J Extracell Vesicles 2023; 12:e12337. [PMID: 37367299 PMCID: PMC10295161 DOI: 10.1002/jev2.12337] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Human small extracellular vesicles (sEVs) derived from adipose-derived mesenchymal stromal cells (ASC) have been reported to suppress the progression of osteoarthritis (OA) in animal studies and subsequently, translation of this potential to assess their clinical efficacy is anticipated. However, fabrication protocols for sEVs to eliminate potential contamination by culture medium-derived components need to be established prior to their clinical use. The purpose of the present studies was to elucidate the influence of medium-derived contaminants on the biological effects of sEVs, and to establish isolation methods for sEVs using a new clinical grade chemically-defined media (CDM). The quantity and purity of ASC-derived sEVs cultured in four different CDMs (CDM1, 2, 3 and 4) were evaluated. The concentrates of the four media incubated without cells were used as the background (BG) control for each set of sEVs. The biological effect of sEVs fabricated in the four different CDMs on normal human articular chondrocytes (hACs) were evaluated in vitro using a variety of methodological assessments. Finally, the sEVs with the highest purity were tested for their ability to suppress the progression of knee OA mouse model. Analysis of the BG controls revealed that CDM1-3 contained detectable particles, while there was no visible contamination of culture media-derived components detected with CDM4. Accordingly, the sEVs fabricated with CDM4 (CDM4-sEVs) exhibited the highest purity and yield. Notably, the CDM4-sEVs were the most efficient in promoting the cellular proliferation, migration, chondrogenic differentiation, and anti-apoptotic activity of hACs. Furthermore, CDM4-sEVs significantly suppressed the osteochondral degeneration in vivo model. Small EVs derived from ASCs cultured in a CDM without detectable contaminants demonstrated enhanced biological effects on hACs and the progression of OA. Thus, sEVs isolated with CDM4 most optimally meet the requirements of efficacy and safety for assessment in their future clinical applications.
Collapse
Affiliation(s)
- Hiroto Hanai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - David A Hart
- Department of Surgery and the McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Canada
| | - George Jacob
- Department of Orthopaedics, VPS Lakeshore Hospital, Kerala, India
| | - Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wataru Ando
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Hyogo, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinicihi Nakagawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masato Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Advances in bone regeneration with growth factors for spinal fusion: A literature review. NORTH AMERICAN SPINE SOCIETY JOURNAL 2022; 13:100193. [PMID: 36605107 PMCID: PMC9807829 DOI: 10.1016/j.xnsj.2022.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Bone tissue is regenerated via the spatiotemporal involvement of various cytokines. Among them, the bone morphogenetic protein (BMP), which plays a vital role in the bone regeneration process, has been applied clinically for the treatment of refractory orthopedic conditions. Although BMP therapy using a collagen carrier has shown efficiency in bone regeneration over the last two decades, a major challenge-considerable side effects associated with the acute release of high doses of BMPs-has also been revealed. To improve BMP efficiency, the development of new carriers and biologics that can be used in conjunction with BMPs is currently underway. In this review, we describe the current status and future prospects of bone regeneration therapy, with a focus on BMPs. Furthermore, we outline the characteristics and molecular signaling pathways involving BMPs, clinical applications of BMPs in orthopedics, clinical results of BMP use in human spinal surgeries, drugs combined with BMPs to provide synergistic effects, and novel BMP carriers.
Collapse
|