1
|
Dong X, He Y, Hu X, Wu J, Ye F, Wang X, Zhao Y, Dan G, Zhao J, Tang H, Lu X, Sai Y, Zou Z, Chen M. Targeting LINC00707 by vitamin D3 attenuates nitrogen mustard-caused dermal toxicity through inhibiting ferroptosis. Redox Biol 2025; 83:103628. [PMID: 40245702 DOI: 10.1016/j.redox.2025.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/05/2025] [Indexed: 04/19/2025] Open
Abstract
Nitrogen mustard (NM) causes severe skin injury that is lack of effective and targeted therapies. Vitamin D3 (VD3) emerges as a promising treatment option for NM-caused dermal toxicity; however, the underlying mechanisms are currently unclear. Herein, we identified that NM markedly promoted ferroptosis by measurement of decreased cell viability, glutathione, glutathione peroxidase 4 and solute carrier family 7 member 11 levels, and increased ROS, lipid ROS, iron/Fe2+ and malondialdehyde contents in vitro and in vivo. Ferrostin-1 (Fer-1, a ferroptosis inhibitor) attenuated NM-caused cell death in keratinocytes. Meanwhile, NM significantly inhibited phosphorylation of AKT1 and glycogen synthase kinase 3β (GSK3β) and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, and increased LINC00707 expression. Furthermore, NM-induced ferroptosis in keratinocytes was abolished by treatment with agonists of Nrf2 (tBHQ) and AKT1 (SC79), the inhibitor of GSK3β (AR-A014418), Nrf2 overexpression or LINC00707 knockdown. Mechanistically, LINC00707 directly bound with the protein kinase domain of AKT1 and suppressed its phosphorylation and activated GSK3β thereby inactivating Nrf2, subsequently inducing ferroptosis and cell death in NM-treated keratinocytes. Moreover, VD3 notably suppressed LINC00707 expression, activated AKT1 and inactivated GSK3β, increased Nrf2 nuclear translocation and inhibited ferroptosis and cytotoxicity induced by NM in vitro and in vivo. The protective effects of VD3 against NM-caused dermal toxicity were blocked by erastin (a ferroptosis inducer), Nrf2 siRNA, LINC00707 overexpression and were enhanced by LINC00707 knockdown and Fer-1 in vitro and in vivo. In conclusion, VD3 ameliorated NM-caused dermal toxicity by inhibiting ferroptosis, which was partially mediated through the LINC00707-AKT1-GSK3β-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Xunhu Dong
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Ying He
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Army Medical University, Chongqing, 400038, China; Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiaofeng Hu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jie Wu
- Department of Tropical Medicine, School of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Feng Ye
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Xiaogang Wang
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yuanpeng Zhao
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Guorong Dan
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Jiqing Zhao
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - He Tang
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Xiaolu Lu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yan Sai
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, China.
| | - Zhongmin Zou
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Mingliang Chen
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, China.
| |
Collapse
|
2
|
Nadukkandy AS, Blaize B, Kumar CD, Mori G, Cordani M, Kumar LD. Non-coding RNAs as mediators of epithelial to mesenchymal transition in metastatic colorectal cancers. Cell Signal 2025; 127:111605. [PMID: 39842529 DOI: 10.1016/j.cellsig.2025.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance. We highlight the interaction of these ncRNAs with and regulation of key signaling pathways, such as Wnt/β-catenin, Notch, JAK-STAT, EGFR, and TGF-β, and the functional relevance of these interactions in CRC progression. Additionally, the review highlights the emerging applications of nanotechnology in enhancing the delivery and efficacy of ncRNA-based therapeutics, which could address existing challenges related to specificity and side effects. Future research directions, including advanced diagnostic tools, targeted therapeutics, strategies to overcome drug resistance, and the integration of personalized medicine approaches are discussed. Integrating nanotechnology with a deeper understanding of CRC biology offers the potential for more effective, targeted, and personalized strategies, though further research is essential to validate these approaches.
Collapse
Affiliation(s)
- Aisha Shigna Nadukkandy
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Britny Blaize
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore 632004, Tamil Nadu, India
| | - Giulia Mori
- Department Of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India.
| |
Collapse
|
3
|
Xie W, Li X, Chen H, Chu J, Zhang L, Tang B, Huang W, Li L, Lin J, Dong Y. 5-Hydroxymethylcytosine Profiles of cfDNA in Urine as Diagnostic, Differential Diagnosis and Prognostic Markers for Multiple Myeloma. Cancer Med 2024; 13:e70477. [PMID: 39711442 DOI: 10.1002/cam4.70477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND An effective urine-based method for the diagnosis, differential diagnosis and prognosis of multiple myeloma (MM) has not yet been developed. Urine cell-free DNA (cfDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive "liquid biopsy" for diagnosis and monitoring of cancer. METHODS We first identified MM-specific hydroxymethylcytosine signatures by comparing 64 MM patients, 23 amyloidosis (AM) patients and 59 healthy cohort. Then, we applied a machine learning algorithm to develop diagnostic and differential diagnosis model. Finally, the prognosis of MM patients was predicted based on their survival time at the last follow-up. RESULTS We identified 11 5hmC markers using logistic regression algorithm could effectively diagnosis MM (AUC = 0.902), and achieved 85.00% specificity and 85.71% sensitivity. These 11 markers could also effectively differential diagnosis MM (AUC = 0.805) with 88.89% specificity and 73.08% sensitivity. In addition, the prognostic prediction model also effectively predicted the prognosis of patients with MM (p < 0.01), of which 4 differential markers (RAPGEF2, BRD1, TET2, TRAF3IP2) could independently predict the prognosis of MM. CONCLUSIONS Together, our findings showed the value of urine cfDNA hydroxymethylcytosine markers in the diagnosis, differential diagnosis and prognosis of MM. Meantime, our study provides a promising and completely non-invasive method for the diagnosis, differential diagnosis and prognosis prediction of MM.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Hematology, Peking University First Hospital, Beijing, People's Republic of China
| | - Xuehui Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Hangyu Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Peking University Third Hospital Cancer Center, Beijing, China
| | - Jinlin Chu
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Lei Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Peking University Third Hospital Cancer Center, Beijing, China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, Beijing, People's Republic of China
| | - Wenrong Huang
- Department of Hematology, Fifth Medical Center, General Hospital of the People's Liberation Army, Beijing, People's Republic of China
| | - Linlin Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
- Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Urumqi, China
| | - Jian Lin
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Peking University Third Hospital Cancer Center, Beijing, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
4
|
Li H, Liu Q, Hu Y, Yin C, Zhang Y, Gao P. Linc00707 regulates autophagy and promotes the progression of triple negative breast cancer by activation of PI3K/AKT/mTOR pathway. Cell Death Discov 2024; 10:138. [PMID: 38485945 PMCID: PMC10940671 DOI: 10.1038/s41420-024-01906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a pathological subtype of breast cancer (BC) with high malignancy, strong invasiveness and poor prognosis. Long non-coding RNA (LncRNA) plays an important role during tumorigenesis. We identified that Linc00707 was upregulated in TNBC tissues by TCGA database and RT-qPCR assay, compared with normal breast tissues and other subtypes of BC. Linc00707 promoted TNBC cells proliferation, migration and invasion. Furthermore, we found that knockdown of Linc00707 influenced autophagy via PI3K/AKT/mTOR signaling pathway in TNBC cells. Linc00707 affected the progress of TNBC cells through affecting autophagy. Further mechanistic experiments confirmed that Linc00707 could competitively bind with miR-423-5p to up-regulate MARCH2 expression, ultimately promoting TNBC progression and autophagy through PI3K/AKT/mTOR pathway. In conclusion, we demonstrate that Linc00707 is a key molecule in tumor progression and may be an effective target for patients with TNBC.
Collapse
Affiliation(s)
- Hongli Li
- Department of Pathology, Qi Lu Hospital and School of Basic Medical Sciences, Shandong University, Shandong, China
- Medicine Research Center, Shandong Second Medical University, Shandong, China
| | - Qinghua Liu
- Medicine Research Center, Shandong Second Medical University, Shandong, China
| | - Yaqiong Hu
- Medicine Research Center, Shandong Second Medical University, Shandong, China
| | - Chonggao Yin
- College of Nursing, Shandong Second Medical University, Shandong, China
| | - Yunxiang Zhang
- Department of Pathology, Qi Lu Hospital and School of Basic Medical Sciences, Shandong University, Shandong, China.
- Department of Pathology, First Affiliated Hospital of Shandong Second Medical University (Weifang People's Hospital), Shandong, China.
| | - Peng Gao
- Department of Pathology, Qi Lu Hospital and School of Basic Medical Sciences, Shandong University, Shandong, China.
| |
Collapse
|
5
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
6
|
Rezaee A, Tehrany PM, Tirabadi FJ, Sanadgol N, Karimi AS, Ajdari A, Eydivandi S, Etemad S, Rajabi R, Rahmanian P, Khorrami R, Nabavi N, Aref AR, Fan X, Zou R, Rashidi M, Zandieh MA, Hushmandi K. Epigenetic regulation of temozolomide resistance in human cancers with an emphasis on brain tumors: Function of non-coding RNAs. Biomed Pharmacother 2023; 165:115187. [PMID: 37499452 DOI: 10.1016/j.biopha.2023.115187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Brain tumors, which are highly malignant, pose a significant threat to health and often result in substantial rates of mortality and morbidity worldwide. The brain cancer therapy has been challenging due to obstacles such as the BBB, which hinders effective delivery of therapeutic agents. Additionally, the emergence of drug resistance further complicates the management of brain tumors. TMZ is utilized in brain cancer removal, but resistance is a drawback. ncRNAs are implicated in various diseases, and their involvement in the cancer is particularly noteworthy. The focus of the current manuscript is to explore the involvement of ncRNAs in controlling drug resistance, specifically in the context of resistance to the chemotherapy drug TMZ. The review emphasizes the function of ncRNAs, particularly miRNAs, in modulating the growth and invasion of brain tumors, which significantly influences their response to TMZ treatment. Through their interactions with various molecular pathways, miRNAs are modulators of TMZ response. Similarly, lncRNAs also associate with molecular pathways and miRNAs, affecting the efficacy of TMZ chemotherapy. Given their functional properties, lncRNAs can either induce or suppress TMZ resistance in brain tumors. Furthermore, circRNAs, which are cancer controllers, regulate miRNAs by acting as sponges, thereby impacting the response to TMZ chemotherapy. The review explores the correlation between ncRNAs and TMZ chemotherapy, shedding light on the underlying molecular pathways involved in this process.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Farimah Jafari Tirabadi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Negin Sanadgol
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asal Sadat Karimi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Eydivandi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Etemad
- Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Semnan, Iran.
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA.
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Yang J, Zhang J, Yang Q, Huang X, Yan Z, Wang P, Gao X, Li J, Li N, Gao Y, Gun S. LncRNA EN-90756 promotes CPB2-induced proliferation and inhibits apoptosis in IPEC-J2 cells by affecting the JAK-STAT signaling pathway activation. Front Microbiol 2023; 13:1082025. [PMID: 36713226 PMCID: PMC9879603 DOI: 10.3389/fmicb.2022.1082025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs), as key regulators, are closely associated with the development of a variety of disease. However, the mechanisms by which lncRNAs regulate Clostridium perfringens type C induced piglet diarrhea are unclear. Methods In the present study, we explored the expression and characterization of lncRNAs in a C. perfringens beta2 (CPB2) toxin-treated intestinal porcine epithelial cell line-J2 (IPEC-J2) using RNA-sequencing (RNA-seq). Results A total of 6,558 lncRNAs were identified, of which 49 lncRNAs were significantly differentially expressed between the control and CPB2 groups. Functional enrichment analysis showed that the target genes of differentially expressed lncRNA EN-90756 were mainly associated with defense response to virus, and negative regulation of apoptotic process. LncRNA EN-90756 was significantly up-regulated in IPEC-J2 cells at different time points after CPB2 treatment. Functionally, knockdown of lncRNA EN-90756 might regulate the proliferation and apoptosis of IPEC-J2 cells by affecting the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. LncRNA EN-90756 may be involved in CPB2 toxin-induced piglet diarrhea by regulating the expression of its target gene MX1 (encoding MX dynamin like GTPase 1). Conclusion Long non-coding RNA EN-90756 affected the antiviral ability of IPEC-J2 cells by regulating the expression of MX1. Meanwhile, lncRNA EN-90756 might regulate cell proliferation and apoptosis by affecting JAK-STAT signaling pathway activation. These findings provide novel perspectives and directions for further exploration of the regulatory mechanisms of lncRNAs on CPB2 toxin-induced diarrhea in piglets.
Collapse
Affiliation(s)
- Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Juanli Zhang
- College of Life Sciences and Technology, Longdong University, Qingyang, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Na Li
- Jilin Rongtai Agricultural Development Co., Ltd., Changchun, China
| | - Yi Gao
- Jilin Rongtai Agricultural Development Co., Ltd., Changchun, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China,Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China,*Correspondence: Shuangbao Gun,
| |
Collapse
|
8
|
Hu T, Niu Y, Fu J, Dong Z, He D, Liu J. Antisense lncRNA PCNA-AS1 promotes esophageal squamous cell carcinoma progression through the miR-2467-3p/PCNA axis. Open Med (Wars) 2022; 17:1483-1494. [PMID: 36213440 PMCID: PMC9490863 DOI: 10.1515/med-2022-0552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Multiple studies have indicated that long non-coding RNAs are aberrantly expressed in cancers and are pivotal in developing various tumors. No studies have investigated the expression and function of long non-coding antisense RNA PCNA-AS1 in esophageal squamous cell carcinoma (ESCC). In this study, the expression of PCNA-AS1 was identified by qRT–PCR. Cell function assays were used to explore the potential effect of PCNA-AS1 on ESCC progression. A prediction website was utilized to discover the relationships among PCNA-AS1, miR-2467-3p and proliferating cell nuclear antigen (PCNA). Dual luciferase reporter gene and RNA immunoprecipitation (RIP) assays were executed to verify the binding activity between PCNA-AS1, miR-2467-3p and PCNA. As a result, PCNA-AS1 was highly expressed in ESCC and was associated with patient prognosis. PCNA-AS1 overexpression strongly contributed to ESCC cell proliferation, invasion and migration. PCNA-AS1 and PCNA were positively correlated in ESCC. Bioinformatics analysis, RIP and luciferase reporter gene assays revealed that PCNA-AS1 could act as a competitive endogenous RNA to sponge miR-2467-3p, thus upregulating PCNA. In conclusion, the current outcome demonstrates that PCNA-AS1 may be a star molecule in the treatment of ESCC.
Collapse
Affiliation(s)
- Tao Hu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Yunfeng Niu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Jianfeng Fu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Dongwei He
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Junfeng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| |
Collapse
|