1
|
Singh MK, Bonnell VA, Tojal Da Silva I, Santiago VF, Moraes MS, Adderley J, Doerig C, Palmisano G, Llinas M, Garcia CRS. A Plasmodium falciparum MORC protein complex modulates epigenetic control of gene expression through interaction with heterochromatin. eLife 2024; 12:RP92201. [PMID: 39412522 PMCID: PMC11483127 DOI: 10.7554/elife.92201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Dynamic control of gene expression is critical for blood stage development of malaria parasites. Here, we used multi-omic analyses to investigate transcriptional regulation by the chromatin-associated microrchidia protein, MORC, during asexual blood stage development of the human malaria parasite Plasmodium falciparum. We show that PfMORC (PF3D7_1468100) interacts with a suite of nuclear proteins, including APETALA2 (ApiAP2) transcription factors (PfAP2-G5, PfAP2-O5, PfAP2-I, PF3D7_0420300, PF3D7_0613800, PF3D7_1107800, and PF3D7_1239200), a DNA helicase DS60 (PF3D7_1227100), and other chromatin remodelers (PfCHD1 and PfEELM2). Transcriptomic analysis of PfMORCHA-glmS knockdown parasites revealed 163 differentially expressed genes belonging to hypervariable multigene families, along with upregulation of genes mostly involved in host cell invasion. In vivo genome-wide chromatin occupancy analysis during both trophozoite and schizont stages of development demonstrates that PfMORC is recruited to repressed, multigene families, including the var genes in subtelomeric chromosomal regions. Collectively, we find that PfMORC is found in chromatin complexes that play a role in the epigenetic control of asexual blood stage transcriptional regulation and chromatin organization.
Collapse
Affiliation(s)
- Maneesh Kumar Singh
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| | - Victoria Ann Bonnell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Eukaryotic Gene Regulation, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Malaria Research, Pennsylvania State University, University ParkHarrisburgUnited States
| | | | | | - Miriam Santos Moraes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| | - Jack Adderley
- School of Health and Biomedical Sciences, RMIT UniversityBundooraAustralia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT UniversityBundooraAustralia
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Science, University of São PauloSão PauloBrazil
| | - Manuel Llinas
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Eukaryotic Gene Regulation, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Malaria Research, Pennsylvania State University, University ParkHarrisburgUnited States
- Department of Chemistry, Pennsylvania State University, University ParkHarrisburgUnited States
| | - Celia RS Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| |
Collapse
|
2
|
Jeffers V. Histone code: a common language and multiple dialects to meet the different developmental requirements of apicomplexan parasites. Curr Opin Microbiol 2024; 79:102472. [PMID: 38581913 PMCID: PMC11162943 DOI: 10.1016/j.mib.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Apicomplexan parasites have complex life cycles, often requiring transmission between two different hosts, facing periods of dormancy within the host or in the environment to maximize chances of transmission. To support survival in these different conditions, tightly regulated and correctly timed gene expression is critical. The modification of histones and nucleosome composition makes a significant contribution to this regulation, and as eukaryotes, the fundamental mechanisms underlying this process in apicomplexans are similar to those in model eukaryotic organisms. However, single-celled intracellular parasites face unique challenges, and regulation of gene expression at the epigenetic level provides tight control for responses that must often be rapid and robust. Here, we discuss the recent advances in understanding the dynamics of histone modifications across Apicomplexan life cycles and the molecular mechanisms that underlie epigenetic regulation of gene expression to promote parasite life cycle progression, dormancy, and transmission.
Collapse
Affiliation(s)
- Victoria Jeffers
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
3
|
Lappalainen R, Kumar M, Duraisingh MT. Hungry for control: metabolite signaling to chromatin in Plasmodium falciparum. Curr Opin Microbiol 2024; 78:102430. [PMID: 38306915 PMCID: PMC11157454 DOI: 10.1016/j.mib.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The human malaria parasite Plasmodium falciparum undergoes a complex life cycle in two hosts, mammalian and mosquito, where it is constantly subjected to environmental changes in nutrients. Epigenetic mechanisms govern transcriptional switches and are essential for parasite persistence and proliferation. Parasites infecting red blood cells are auxotrophic for several nutrients, and mounting evidence suggests that various metabolites act as direct substrates for epigenetic modifications, with their abundance directly relating to changes in parasite gene expression. Here, we review the latest understanding of metabolic changes that alter the histone code resulting in changes to transcriptional programmes in malaria parasites.
Collapse
Affiliation(s)
- Ruth Lappalainen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA.
| |
Collapse
|
4
|
Azizan S, Selvarajah SA, Tang J, Jeninga MD, Schulz D, Pareek K, Herr T, Day KP, De Koning-Ward TF, Petter M, Duffy MF. The P. falciparum alternative histones Pf H2A.Z and Pf H2B.Z are dynamically acetylated and antagonized by PfSir2 histone deacetylases at heterochromatin boundaries. mBio 2023; 14:e0201423. [PMID: 37882786 PMCID: PMC10746207 DOI: 10.1128/mbio.02014-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The malaria parasite Plasmodium falciparum relies on variant expression of members of multi-gene families as a strategy for environmental adaptation to promote parasite survival and pathogenesis. These genes are located in transcriptionally silenced DNA regions. A limited number of these genes escape gene silencing, and switching between them confers variant fitness on parasite progeny. Here, we show that PfSir2 histone deacetylases antagonize DNA-interacting acetylated alternative histones at the boundaries between active and silent DNA. This finding implicates acetylated alternative histones in the mechanism regulating P. falciparum variant gene silencing and thus malaria pathogenesis. This work also revealed that acetylation of alternative histones at promoters is dynamically associated with promoter activity across the genome, implicating acetylation of alternative histones in gene regulation genome wide. Understanding mechanisms of gene regulation in P. falciparum may aid in the development of new therapeutic strategies for malaria, which killed 619,000 people in 2021.
Collapse
Affiliation(s)
- Suffian Azizan
- School of BioSciences, The University of Melbourne, Melbourne, Australia
- Bio21 Institute, Parkville, Victoria, Australia
| | - Shamista A. Selvarajah
- School of BioSciences, The University of Melbourne, Melbourne, Australia
- Bio21 Institute, Parkville, Victoria, Australia
| | - Jingyi Tang
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Australia
| | - Myriam D. Jeninga
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | - Kapil Pareek
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tamara Herr
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Karen P. Day
- Bio21 Institute, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tania F. De Koning-Ward
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Australia
| | - Michaela Petter
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael F. Duffy
- Bio21 Institute, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Fleck K, McNutt S, Chu F, Jeffers V. An apicomplexan bromodomain protein, TgBDP1, associates with diverse epigenetic factors to regulate essential transcriptional processes in Toxoplasma gondii. mBio 2023; 14:e0357322. [PMID: 37350586 PMCID: PMC10470533 DOI: 10.1128/mbio.03573-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/18/2023] [Indexed: 06/24/2023] Open
Abstract
The protozoan pathogen Toxoplasma gondii relies on tight regulation of gene expression to invade and establish infection in its host. The divergent gene regulatory mechanisms of Toxoplasma and related apicomplexan pathogens rely heavily on regulators of chromatin structure and histone modifications. The important contribution of histone acetylation for Toxoplasma in both acute and chronic infection has been demonstrated, where histone acetylation increases at active gene loci. However, the direct consequences of specific histone acetylation marks and the chromatin pathway that influences transcriptional regulation in response to the modification are unclear. As a reader of lysine acetylation, the bromodomain serves as a mediator between the acetylated histone and transcriptional regulators. Here we show that the bromodomain protein, TgBDP1, which is conserved among Apicomplexa and within the Alveolata superphylum, is essential for Toxoplasma asexual proliferation. Using cleavage under targets and tagmentation, we demonstrate that TgBDP1 is recruited to transcriptional start sites of a large proportion of parasite genes. Transcriptional profiling during TgBDP1 knockdown revealed that loss of TgBDP1 leads to major dysregulation of gene expression, implying multiple roles for TgBDP1 in both gene activation and repression. This is supported by interactome analysis of TgBDP1 demonstrating that TgBDP1 forms a core complex with two other bromodomain proteins and an ApiAP2 factor. This core complex appears to interact with other epigenetic factors such as nucleosome remodeling complexes. We conclude that TgBDP1 interacts with diverse epigenetic regulators to exert opposing influences on gene expression in the Toxoplasma tachyzoite. IMPORTANCE Histone acetylation is critical for proper regulation of gene expression in the single-celled eukaryotic pathogen Toxoplasma gondii. Bromodomain proteins are "readers" of histone acetylation and may link the modified chromatin to transcription factors. Here, we show that the bromodomain protein TgBDP1 is essential for parasite survival and that loss of TgBDP1 results in global dysregulation of gene expression. TgBDP1 is recruited to the promoter region of a large proportion of parasite genes, forms a core complex with two other bromodomain proteins, and interacts with different transcriptional regulatory complexes. We conclude that TgBDP1 is a key factor for sensing specific histone modifications to influence multiple facets of transcriptional regulation in Toxoplasma gondii.
Collapse
Affiliation(s)
- Krista Fleck
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Seth McNutt
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Feixia Chu
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Victoria Jeffers
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
6
|
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023; 11:1966. [PMID: 37630530 PMCID: PMC10460021 DOI: 10.3390/microorganisms11081966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.
Collapse
Affiliation(s)
- Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
7
|
Wichers-Misterek JS, Krumkamp R, Held J, von Thien H, Wittmann I, Höppner YD, Ruge JM, Moser K, Dara A, Strauss J, Esen M, Fendel R, Sulyok Z, Jeninga MD, Kremsner PG, Sim BKL, Hoffman SL, Duffy MF, Otto TD, Gilberger TW, Silva JC, Mordmüller B, Petter M, Bachmann A. The exception that proves the rule: Virulence gene expression at the onset of Plasmodium falciparum blood stage infections. PLoS Pathog 2023; 19:e1011468. [PMID: 37384799 DOI: 10.1371/journal.ppat.1011468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Irene Wittmann
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yannick Daniel Höppner
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Julia M Ruge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Kara Moser
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Antoine Dara
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Jan Strauss
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Zita Sulyok
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Myriam D Jeninga
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - B Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | - Michael F Duffy
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| |
Collapse
|
8
|
Singh AK, Phillips M, Alkrimi S, Tonelli M, Boyson SP, Malone KL, Nix JC, Glass KC. Structural insights into acetylated histone ligand recognition by the BDP1 bromodomain of Plasmodium falciparum. Int J Biol Macromol 2022; 223:316-326. [PMID: 36328269 PMCID: PMC10093686 DOI: 10.1016/j.ijbiomac.2022.10.247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Plasmodium falciparum requires a two-host system, moving between Anopheles mosquito and humans, to complete its life cycle. To overcome such dynamic growth conditions its histones undergo various post-translational modifications to regulate gene expression. The P. falciparum Bromodomain Protein 1 (PfBDP1) has been shown to interact with acetylated lysine modifications on histone H3 to regulate the expression of invasion-related genes. Here, we investigated the ability of the PfBDP1 bromodomain to interact with acetyllsyine modifications on additional core and variant histones. A crystal structure of the PfBDP1 bromodomain (PfBDP1-BRD) reveals it contains the conserved bromodomain fold, but our comparative analysis between the PfBDP1-BRD and human bromodomain families indicates it has a unique binding mechanism. Solution NMR spectroscopy and ITC binding assays carried out with acetylated histone ligands demonstrate that it preferentially recognizes tetra-acetylated histone H4, and we detected weaker interactions with multi-acetylated H2A.Z in addition to the previously reported interactions with acetylated histone H3. Our findings indicate PfBDP1 may play additional roles in the P. falciparum life cycle, and the distinctive features of its bromodomain binding pocket could be leveraged for the development of new therapeutic agents to help overcome the continuously evolving resistance of P. falciparum against currently available drugs.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Margaret Phillips
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Saleh Alkrimi
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA
| | - Marco Tonelli
- NMRFAM and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel P Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA
| | - Kiera L Malone
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Berkeley, CA 94720, USA
| | - Karen C Glass
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA.
| |
Collapse
|