1
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
2
|
Luo Y, Bi Y, Xu Z, Shan L, He J, Wang K, Zhou Z, Yu L, Jiang X, Yang J, Yu L, Gao R, Wei J, Du X, Liu Y, Fang C. Exploring possible benefits of Litsea cubeba Pers. extract on growth, meat quality, and gut flora in white-feather broilers. Front Vet Sci 2024; 10:1335208. [PMID: 38288379 PMCID: PMC10823429 DOI: 10.3389/fvets.2023.1335208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
White-feather broiler chickens are the dominant species in global poultry meat production. Yet there is growing concern about their health, quality, and growth efficiency. While feed additives, often antibiotics or synthetic chemicals, are used to maintain the health of the animals, drug resistance limits their use. Litsea cubeba (Lour.) Pers., a traditional Chinese herb with antibiotic-like benefits but without the risk of drug resistance, has not yet been explored as an additive to broiler diets. In the present study, broilers of the AA+ hybrid strain were randomly divided into three groups of 16: a control group (regular feed), a low-dose group (1.25 g/kg added L. cubeba extract), and a high-dose group (2.50 g/kg added L. cubeba extract). After 35 days, we found that the extract had no effect on growth. However, gut flora analysis revealed that both doses of the extract had a positive influence on amino acid content and minor unsaturated fatty acids, thus improving the flavor and nutritional value of the meat. These findings suggest that L. cubeba extract, at either dose, could serve as a sustainable alternative to antibiotics, thus reducing the risk of drug resistance while improving meat quality, nutrition, and flavor.
Collapse
Affiliation(s)
- Yankai Luo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
| | - Yuchen Bi
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ziyun Xu
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Linxian Shan
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun He
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kedan Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Zhengjiang Zhou
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Tea, Yunnan Agricultural University, Kunming, China
| | - Lihui Yu
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xingjiao Jiang
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jiangrui Yang
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lijun Yu
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Rui Gao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jingran Wei
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xiaocui Du
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
| | - Yan Liu
- The International College, Yunnan Agricultural University, Kunming, China
| | - Chongye Fang
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Ayalew H, Wang J, Wu S, Qiu K, Tekeste A, Xu C, Lamesgen D, Cao S, Qi G, Zhang H. Biophysiology of in ovo administered bioactive substances to improve gastrointestinal tract development, mucosal immunity, and microbiota in broiler chicks. Poult Sci 2023; 102:103130. [PMID: 37926011 PMCID: PMC10633051 DOI: 10.1016/j.psj.2023.103130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Early embryonic exogenous feeding of bioactive substances is a topic of interest in poultry production, potentially improving gastrointestinal tract (GIT) development, stimulating immunization, and maximizing the protection capability of newly hatched chicks. However, the biophysiological actions and effects of in ovo administered bioactive substances are inconsistent or not fully understood. Thus, this paper summarizes the functional effects of bioactive substances and their interaction merits to augment GIT development, the immune system, and microbial homeostasis in newly hatched chicks. Prebiotics, probiotics, and synbiotics are potential bioactive substances that have been administered in embryonic eggs. Their biological effects are enhanced by a variety of mechanisms, including the production of antimicrobial peptides and antibiotic responses, regulation of T lymphocyte numbers and immune-related genes in either up- or downregulation fashion, and enhancement of macrophage phagocytic capacity. These actions occur directly through the interaction with immune cell receptors, stimulation of endocytosis, and phagocytosis. The underlying mechanisms of bioactive substance activity are multifaceted, enhancing GIT development, and improving both the innate and adaptive immune systems. Thus summarizing these modes of action of prebiotics, probiotics and synbiotics can result in more informed decisions and also provides baseline for further research.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ayalsew Tekeste
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dessalegn Lamesgen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sumei Cao
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Tobin I, Zhang G. Regulation of Host Defense Peptide Synthesis by Polyphenols. Antibiotics (Basel) 2023; 12:660. [PMID: 37107022 PMCID: PMC10135163 DOI: 10.3390/antibiotics12040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The rise of antimicrobial resistance has created an urgent need for antibiotic-alternative strategies for disease control and prevention. Host defense peptides (HDPs), which have both antimicrobial and immunomodulatory properties, are an important component of the innate immune system. A host-directed approach to stimulate the synthesis of endogenous HDPs has emerged as a promising solution to treat infections with a minimum risk for developing antimicrobial resistance. Among a diverse group of compounds that have been identified as inducers of HDP synthesis are polyphenols, which are naturally occurring secondary metabolites of plants characterized by the presence of multiple phenol units. In addition to their well-known antioxidant and anti-inflammatory activities, a variety of polyphenols have been shown to stimulate HDP synthesis across animal species. This review summarizes both the in vitro and in vivo evidence of polyphenols regulating HDP synthesis. The mechanisms by which polyphenols induce HDP gene expression are also discussed. Natural polyphenols warrant further investigation as potential antibiotic alternatives for the control and prevention of infectious diseases.
Collapse
Affiliation(s)
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
5
|
Yang Y, Hua Y, Chen W, Zheng H, Wu H, Qin S, Huang S. Therapeutic targets and pharmacological mechanisms of Coptidis Rhizoma against ulcerative colitis: Findings of system pharmacology and bioinformatics analysis. Front Pharmacol 2022; 13:1037856. [PMID: 36532769 PMCID: PMC9748441 DOI: 10.3389/fphar.2022.1037856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 08/09/2023] Open
Abstract
Evidence of the advantages of Coptidis Rhizoma (CR) for the treatment of ulcerative colitis (UC) is accumulating. However, research revealing the targets and molecular mechanisms of CR against UC is scarce. In this research, a bioinformatics analysis was performed to carry out the physicochemical properties and biological activities of phytochemicals in CR and analyze the binding activities, targets, biological functions and mechanisms of CR against UC. This research shows that the CR's key phytochemicals, which are named Coptisine, Berberrubine, Berlambine, Berberine, Epiberberine, Obacunone, Worenine, Quercetin, (R)-Canadine, Magnograndiolide, Palmatine and Moupinamide, have ideal physicochemical properties and bioactivity. A total of 1,904 potential phytochemical targets and 17,995 UC-related targets are identified, and we finally acquire 233 intersection targets between key phytochemicals and disease. A protein-protein interaction network of 233 common targets was constructed; and six hub targets were acquired with a degree greater than or equal to median, namely TP53, HSP90AA1, STAT3, ESR1, MYC, and RELA. The enrichment analysis suggested that the core targets may exert an impact on anti-inflammatory, immunoregulatory, anti-oxidant and anti-fibrosis functions mainly through the PI3K/ART signaling pathway, Th17 differentiation signaling pathway, inflammatory bowel disease signaling pathway, etcetera. Also, a molecular docking analysis shows that the key phytochemicals have strong affinity for binding to the core targets. Finally, the interaction network of CR, phytochemicals, targets, GO functions, KEGG pathways and UC is constructed. This study indicates that the key phytochemicals in CR have superior drug likeness and bioactivity, and the molecular mechanism of key phytochemicals against UC may be via the signaling pathway mentioned above. The potential and critical pharmacological mechanisms provide a direction for future research.
Collapse
Affiliation(s)
- Yuanming Yang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Yiwei Hua
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihuan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Haomeng Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shumin Qin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Yang Chunbo Academic Experience Inheritance Studio of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Effects of Compound Chinese Herbal Medicine Additive on Growth Performance and Gut Microbiota Diversity of Zi Goose. Animals (Basel) 2022; 12:ani12212942. [PMID: 36359068 PMCID: PMC9655946 DOI: 10.3390/ani12212942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effects of CCHMA on growth performance, slaughter performance, serum biochemical indicators, intestinal morphology and microbiota of Zi goose. Initially, it was determined the optimal addition concentration of CCHMA to be 3 g/kg by the first feeding experiment. Then, 78 Zi geese were divided into control and CCHMA supplemented groups. The results showed that the body weight (BW) and average daily gain (ADG) of the CCHMA supplemented group was significantly increased (p < 0.05), and the feed/gain (F/G) of the CCHMA supplemented group was significantly decreased (p < 0.05) compared with the control group. The dressed yield percentage in the CCHMA supplemented group significantly increased by 0.78% (p < 0.05). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were significantly lower in the CCHMA fed birds than in the control group (p < 0.05). Further, 16S rDNA gene sequencing conducted for cecal flora composition found that 3 g/kg CCHMA significantly increased the abundance of beneficial bacteria (CHKCI001, Colidextribacter and Subdoligranulum) (p < 0.05; p < 0.01) and suppressing harmful bacteria (Bacteroidetes and Methanobrevibacter) (p < 0.05) in the cecum of Zi goose. In conclusion, adding 3 g/kg of CCHMA in the diet can improve the growth performance, slaughter performance of Zi goose, and optimize the cecum microflora.
Collapse
|
7
|
He Y, Peng L, Zhao X, Fan X, Tang X, Shi G, Li S. Selenium Deficiency Induces Inflammatory Response and Decreased Antimicrobial Peptide Expression in Chicken Jejunum Through Oxidative Stress. Biol Trace Elem Res 2022; 201:3461-3473. [PMID: 36208383 DOI: 10.1007/s12011-022-03442-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
Selenium deficiency can affect the level of selenoprotein in organs and tissues and cause inflammation. However, the mechanism of selenium deficiency on jejunal injury in chickens remains unclear. In this study, we established a selenium deficiency model in chickens by feeding a low selenium diet and observed ultrastructural and pathological changes in the jejunum. The expression levels of 25 selenoproteins, the levels of oxidative stress, tight junction (TJ) proteins, and antimicrobial peptides (AMP), as well as the expression levels of factors related to inflammatory signaling pathways, were examined in the intestine and analyzed using principal component analysis (PCA). The results of PCA and quantitative real-time PCR (qRT-PCR) showed that selenium deficiency mainly affected the expression of antioxidant selenoproteins in chicken jejunum, especially glutathione peroxidases, thioredoxin reductase, and iodothyronine deiodinase, thus weakening the antioxidant function in the intestine and inducing oxidative stress. We also found disruption of intestinal TJ structures, a significant reduction in TJ protein expression, and downregulation of antimicrobial peptide levels, suggesting that selenium deficiency led to damage of the intestinal barrier. In addition, a significant increase in inflammatory cell infiltration and expression of inflammatory factors was observed in the jejunum, indicating that selenium deficiency induces inflammatory injury. In conclusion, selenium deficiency downregulates antioxidant selenoproteins levels, induces oxidative stress, decreases intestinal AMP levels, and leads to inflammatory injury and disruption of the intestinal barrier in the jejunum. These results shed new light on the molecular mechanisms of intestinal damage caused by selenium deficiency.
Collapse
Affiliation(s)
- Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lin Peng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaochun Zhao
- Animal Disease Control and Prevention of Heilongjiang Province, Harbin, 150069, China
| | - Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyu Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|