1
|
Sahoo R, Pattnaik S, Mohanty B, Mir SA, Behera B. Aryl hydrocarbon receptor (AHR) signalling: A double-edged sword guiding both cancer progression and cancer therapy. Biochim Biophys Acta Gen Subj 2025; 1869:130805. [PMID: 40222634 DOI: 10.1016/j.bbagen.2025.130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Aryl Hydrocarbon Receptor (AHR) reported to be associated with major carcinogenic signalling cascades which cause cell proliferations, metastasis and invasion as well as immune imbalance. AHR Participates in cellular processes not only through genomic pathways to cause genomic alterations but also via nongenomic pathways to alter various cytoplasmic proteins. In addition, AHR senses a wide range of ligands that modulate its downstream mechanisms that are intricated in cancer induction and prevention. Thus, AHR functions as a two-sided sword where some AHR ligands contribute to enhance cancer whereas few are useful for cancer treatment. Therefore, AHR represent as a regulatory point in cancer progression and treatment. There is a need to reinvestigate the regulatory role of AHR in major intracellular pathways and to explore the potential of AHR ligand for the design of cancer therapeutics. This review emphasizes the interaction of AHR with pro-carcinogenic signalling pathways that modulate cancer induction and progression. Furthermore, it also discusses about the current discovery of AHR ligands for cancer initiation or inhibition. This information could be useful for development of therapeutic strategies for the management of cancer by targeting AHR.
Collapse
Affiliation(s)
- Rahul Sahoo
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Sriya Pattnaik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Biswajit Mohanty
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Birendra Behera
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India.
| |
Collapse
|
2
|
Dieli R, Lioy R, Crispo F, Cascelli N, Martinelli M, Lerose R, Telesca D, Milella MR, Colella M, Loperte S, Mazzoccoli C. The Oncoprotein Mucin 1 in Pancreatic Cancer Onset and Progression: Potential Clinical Implications. Biomolecules 2025; 15:275. [PMID: 40001578 PMCID: PMC11853026 DOI: 10.3390/biom15020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by poor prognosis, therapeutic resistance, and frequent recurrence. Current therapeutic options for PDAC include surgery, radiotherapy, immunological and targeted approaches. However, all these therapies provide only a slight improvement in patient survival. Consequently, the discovery of novel specific targets is becoming a priority to develop more effective treatments for PDAC. Mucin 1 (MUC1), a transmembrane glycoprotein, is aberrantly glycosylated and frequently overexpressed in pancreatic cancer. Recent studies highlighted the role of this oncoprotein in pancreatic carcinogenesis and its involvement in the acquisition of typical aggressive features of PDAC, like local invasion, metastases, and drug resistance. This review explores the mechanisms by which MUC1 contributes to cancer onset and progression, with a focus on its potential role as a biomarker and novel therapeutic target for pancreatic adenocarcinoma treatment.
Collapse
Affiliation(s)
- Rosalia Dieli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Rosa Lioy
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Nicoletta Cascelli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Mara Martinelli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Rosa Lerose
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.L.); (D.T.); (M.R.M.)
| | - Donatella Telesca
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.L.); (D.T.); (M.R.M.)
| | - Maria Rita Milella
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.L.); (D.T.); (M.R.M.)
| | - Marco Colella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Simona Loperte
- Institute of Methodologies for Environmental Analysis, National Research Council, 85050 Tito Scalo, Italy;
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| |
Collapse
|
3
|
Park S, Maus MV, Choi BD. CAR-T cell therapy for the treatment of adult high-grade gliomas. NPJ Precis Oncol 2024; 8:279. [PMID: 39702579 DOI: 10.1038/s41698-024-00753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
Treatment for malignant primary brain tumors, including glioblastoma, remains a significant challenge despite advances in therapy. CAR-T cell immunotherapy represents a promising alternative to conventional treatments. This review discusses the landscape of clinical trials for CAR-T cell therapy targeting brain tumors, highlighting key advancements like novel target antigens and combinatorial strategies designed to address tumor heterogeneity and immunosuppression, with the goal of improving outcomes for patients with these aggressive cancers.
Collapse
Affiliation(s)
- Sangwoo Park
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bryan D Choi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Kent MR, Jay AN, Kendall GC. New dual inducible cellular model to investigate temporal control of oncogenic cooperating genes. Sci Rep 2024; 14:20773. [PMID: 39237585 PMCID: PMC11377716 DOI: 10.1038/s41598-024-71227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
The study of cooperating genes in cancer can lead to mechanistic understanding and identifying potential therapeutic targets. To facilitate these types of studies, we developed a new dual-inducible system utilizing the tetracycline- and cumate-inducible systems driving HES3 and the PAX3::FOXO1 fusion-oncogene, respectively, as cooperating genes from fusion-positive rhabdomyosarcoma. With this model, we can independently induce expression of either HES3 or PAX3::FOXO1, as well as simultaneously induce expression of both genes. This new model will allow us to further investigate the cooperation between HES3 and PAX3::FOXO1 including the temporal requirements for genetic cooperation. Functionally, we show that dual-induction of PAX3::FOXO1 and HES3 modifies sphere formation in a HEK293T-based system. More broadly, this lentiviral dual-inducible system can be adapted for any cooperating genes (overexpression or knockdown), allowing for independent, simultaneous, or temporally controlled gene expression.
Collapse
Affiliation(s)
- Matthew R Kent
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Amanda N Jay
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Genevieve C Kendall
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA.
| |
Collapse
|
5
|
Erler P, Kurcon T, Cho H, Skinner J, Dixon C, Grudman S, Rozlan S, Dessez E, Mumford B, Jo S, Boyne A, Juillerat A, Duchateau P, Poirot L, Aranda-Orgilles B. Multi-armored allogeneic MUC1 CAR T cells enhance efficacy and safety in triple-negative breast cancer. SCIENCE ADVANCES 2024; 10:eadn9857. [PMID: 39213364 PMCID: PMC11364110 DOI: 10.1126/sciadv.adn9857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Solid tumors, such as triple-negative breast cancer (TNBC), are biologically complex due to cellular heterogeneity, lack of tumor-specific antigens, and an immunosuppressive tumor microenvironment (TME). These challenges restrain chimeric antigen receptor (CAR) T cell efficacy, underlining the importance of armoring. In solid cancers, a localized tumor mass allows alternative administration routes, such as intratumoral delivery with the potential to improve efficacy and safety but may compromise metastatic-site treatment. Using a multi-layered CAR T cell engineering strategy that allowed a synergy between attributes, we show enhanced cytotoxic activity of MUC1 CAR T cells armored with PD1KO, tumor-specific interleukin-12 release, and TGFBR2KO attributes catered towards the TNBC TME. Intratumoral treatment effectively reduced distant tumors, suggesting retention of antigen-recognition benefits at metastatic sites. Overall, we provide preclinical evidence of armored non-alloreactive MUC1 CAR T cells greatly reducing high TNBC tumor burden in a TGFB1- and PD-L1-rich TME both at local and distant sites while preserving safety.
Collapse
Affiliation(s)
| | | | - Hana Cho
- Cellectis Inc., New York, NY, USA
| | | | | | | | | | | | | | - Sumin Jo
- Cellectis Inc., New York, NY, USA
| | | | | | | | | | | |
Collapse
|
6
|
Ayyalasomayajula R, Cudic M. Targeting Siglec-Sialylated MUC1 Immune Axis in Cancer. Cancers (Basel) 2024; 16:1334. [PMID: 38611013 PMCID: PMC11011055 DOI: 10.3390/cancers16071334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.
Collapse
Affiliation(s)
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA;
| |
Collapse
|
7
|
Kent MR, Jay AN, Kendall GC. New Dual Inducible Cellular Model to Investigate Temporal Control of Oncogenic Cooperating Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581802. [PMID: 38464002 PMCID: PMC10925205 DOI: 10.1101/2024.02.23.581802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The study of cooperating genes in cancer can lead to mechanistic understanding and identifying potential therapeutic targets. To facilitate these types of studies, we developed a new dual-inducible system utilizing the tetracycline- and cumate-inducible systems driving HES3 and the PAX3::FOXO1 fusion-oncogene, respectively, as cooperating genes from fusion-positive rhabdomyosarcoma. With this new model, we can independently induce expression of either HES3 or PAX3::FOXO1, as well as simultaneously induce expression of both genes. This new model will allow us to further investigate the cooperation between HES3 and PAX3::FOXO1 including the temporal requirements for genetic cooperation. This dual-inducible model can be adapted for any cooperating genes, allowing for independent, simultaneous, or temporally controlled gene expression.
Collapse
|
8
|
Bose M, Sanders A, Handa A, Vora A, Cardona MR, Brouwer C, Mukherjee P. Molecular crosstalk between MUC1 and STAT3 influences the anti-proliferative effect of Napabucasin in epithelial cancers. Sci Rep 2024; 14:3178. [PMID: 38326371 PMCID: PMC10850135 DOI: 10.1038/s41598-024-53549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
MUC1 is a transmembrane glycoprotein that is overexpressed and aberrantly glycosylated in epithelial cancers. The cytoplasmic tail of MUC1 (MUC1 CT) aids in tumorigenesis by upregulating the expression of multiple oncogenes. Signal transducer and activator of transcription 3 (STAT3) plays a crucial role in several cellular processes and is aberrantly activated in many cancers. In this study, we focus on recent evidence suggesting that STAT3 and MUC1 regulate each other's expression in cancer cells in an auto-inductive loop and found that their interaction plays a prominent role in mediating epithelial-to-mesenchymal transition (EMT) and drug resistance. The STAT3 inhibitor Napabucasin was in clinical trials but was discontinued due to futility. We found that higher expression of MUC1 increased the sensitivity of cancer cells to Napabucasin. Therefore, high-MUC1 tumors may have a better outcome to Napabucasin therapy. We report how MUC1 regulates STAT3 activity and provide a new perspective on repurposing the STAT3-inhibitor Napabucasin to improve clinical outcome of epithelial cancer treatment.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA.
| | - Alexa Sanders
- Department of Bioinformatics, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Aashna Handa
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Aabha Vora
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Manuel R Cardona
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Cory Brouwer
- Department of Bioinformatics, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
9
|
Chen X, Sandrine IK, Yang M, Tu J, Yuan X. MUC1 and MUC16: critical for immune modulation in cancer therapeutics. Front Immunol 2024; 15:1356913. [PMID: 38361923 PMCID: PMC10867145 DOI: 10.3389/fimmu.2024.1356913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
The Mucin (MUC) family, a range of highly glycosylated macromolecules, is ubiquitously expressed in mammalian epithelial cells. Such molecules are pivotal in establishing protective mucosal barriers, serving as defenses against pathogenic assaults. Intriguingly, the aberrant expression of specific MUC proteins, notably Mucin 1 (MUC1) and Mucin 16 (MUC16), within tumor cells, is intimately associated with oncogenesis, proliferation, and metastasis. This association involves various mechanisms, including cellular proliferation, viability, apoptosis resistance, chemotherapeutic resilience, metabolic shifts, and immune surveillance evasion. Due to their distinctive biological roles and structural features in oncology, MUC proteins have attracted considerable attention as prospective targets and biomarkers in cancer therapy. The current review offers an exhaustive exploration of the roles of MUC1 and MUC16 in the context of cancer biomarkers, elucidating their critical contributions to the mechanisms of cellular signal transduction, regulation of immune responses, and the modulation of the tumor microenvironment. Additionally, the article evaluates the latest advances in therapeutic strategies targeting these mucins, focusing on innovations in immunotherapies and targeted drugs, aiming to enhance customization and accuracy in cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Zhang H, Zhang J, Wang C, Wu D, Shi G. Extract of Sophorae flavescentis radix-Cnidii fructus couplet medicines treats vulvovaginal candidiasis by affecting the vaginal mucosal barrier. Future Microbiol 2023; 18:809-824. [PMID: 37668465 DOI: 10.2217/fmb-2023-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Aim: This study investigated the inhibition of extract of Sophorae flavescentis radix-Cnidii fructus couplet medicines (ESCC) on Candida albicans (C. albicans) in vitro and the effect of ESCC on the vaginal mucosal barrier in vivo. Materials & methods: Susceptibility testing was performed with C. albicans SC5314. A vulvovaginal candidiasis mouse model was successfully established. The plate method, Gram staining, hematoxylin and eosin staining and ELISA were used to detect relevant inflammatory indexes: IFN-γ, IL-1 and TNF-α. Quantitative real-time PCR and western blot were used to detect mucosal immune-related factors: MUC1, MUC4, DEFB1 and DEFB2. Results: ESCC was able to inhibit the proliferative activity of C. albicans, and it affected inflammation-related factors and indicators of vaginal mucosal immunity. Conclusion: ESCC showed potential value in the treatment of vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Haitao Zhang
- Research Institute of Integrated Traditional Chinese & Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Jiaping Zhang
- Research Institute of Integrated Traditional Chinese & Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Changzhong Wang
- Research Institute of Integrated Traditional Chinese & Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Department of Pathogenic Biology & Immunology, College of Integrated Chinese & Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Daqiang Wu
- Research Institute of Integrated Traditional Chinese & Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Department of Pathogenic Biology & Immunology, College of Integrated Chinese & Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Gaoxiang Shi
- Research Institute of Integrated Traditional Chinese & Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Department of Pathogenic Biology & Immunology, College of Integrated Chinese & Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| |
Collapse
|
11
|
Yin Y, Yang C, Xu J, Luo Y, Xia Q, He K. MUC1 promotes lung metastases of liver cancer by impairing anti-tumor immunity. Discov Oncol 2023; 14:18. [PMID: 36738352 PMCID: PMC9899301 DOI: 10.1007/s12672-023-00627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
PURPOSE MUC1 is a membrane bound protein that can regulate tumor progression but its role in tumor metastasis and the metastatic microenvironment remains unclear. METHODS We performed differential gene analysis for primary liver cancer (n = 31) and lung metastases (n = 31) using the Gene Expression Omnibus (GEO) dataset (GSE141016) and obtained RNA sequencing data from 374 liver cancer and 50 normal tissues from The Cancer Genome Atlas (TCGA). We analyzed the prognostic value of MUC1 and the relationship between MUC1 and the TME using online databases and a clinical cohort. Immunohistochemistry detected MUC1 in normal liver, liver cancer, and lung metastases. Multiplex immunohistochemistry staining detected immune cells in the metastatic microenvironment. RESULTS High MUC1 expression levels in hepatocellular carcinoma are associated with worse clinical prognosis and higher rates of lung metastasis. In addition, we observed a correlation between MUC1 and multiple immune cells in the metastatic microenvironment. In paired primary liver cancer and lung metastatic tumor tissues from the same patient, we observed higher MUC1 protein levels in lung metastases than in primary liver cancer. Furthermore, MUC1 was negatively correlated with CD8+T and Treg cells in the metastatic tumor microenvironment and positively correlated with DC. In addition, we found that MUC1 was associated with CD8+T cell activation and function using flow cytometry in another cohort of patients with liver cancer. CONCLUSION These data confirm the potential of MUC1 as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Yanze Yin
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Changjie Yang
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Jiafeng Xu
- School of Economics and Finance, Shanghai International Studies University, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
- Shanghai Institute of Transplantation, Shanghai, China.
| | - Qiang Xia
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
- Shanghai Institute of Transplantation, Shanghai, China.
| | - Kang He
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
- Shanghai Institute of Transplantation, Shanghai, China.
| |
Collapse
|