1
|
Zhao Y, Shi G, Huang X, Zhang Z, Liao K, Xiong H, Feng Z, Mao S, Zhang X. LRP8 inhibits bladder cancer cell ferroptosis by activating the Wnt/β-catenin-SCD1 positive feedback loop. Hum Mol Genet 2025; 34:843-851. [PMID: 39989004 DOI: 10.1093/hmg/ddaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 01/17/2025] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Advanced bladder cancer (bc) patients often have poor prognoses due to issues such as recurrence and drug resistance. The discovery of ferroptosis has opened new avenues for bc treatment; however, the specific regulatory mechanisms remain to be explored. This study aimed to investigate the mechanisms influencing ferroptosis in bc cells, with a particular focus on the role of low-density lipoprotein receptor-related protein 8 (LRP8). METHODS We utilized reverse transcription-quantitative polymerase chain reaction and western blot to assess the expression of LRP8 in bc cells, activation of the Wnt/β-catenin signaling pathway, and the expression of genes related to fatty acid synthesis. We measured changes in ferroptosis levels by evaluating mitochondrial membrane potential, Fe2+, malondialdehyde, and reactive oxygen species levels. A xenograft mouse model was employed to validate the impact of LRP8 on bc progression. RESULTS Cell experiments demonstrated a significant upregulation of LRP8 expression in bc cells. Knockdown of LRP8 induced ferroptosis in bc cells, a process directly triggered by the inhibition of the Wnt/β-catenin signaling pathway. Activation of the Wnt/β-catenin signaling pathway mediated by LRP8 upregulated the expression of stearoyl-CoA desaturase 1 (SCD1), subsequently leading to the suppression of ferroptosis. In vivo experiments indicated that LRP8 knockdown significantly impaired bc growth, accompanied by inhibition of the Wnt/β-catenin-SCD1 axis. CONCLUSION LRP8 mediates the synthesis of monounsaturated fatty acids through the Wnt/β-catenin-SCD1 positive feedback loop, thereby inhibiting ferroptosis in bc cells. These findings provide a promising target for the regulation of ferroptosis in bc cells.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Urology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317 Zhongshan Road, Yanping District, Nanping City, Fujian Province 353000, China
| | - Guohong Shi
- Department of Urology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317 Zhongshan Road, Yanping District, Nanping City, Fujian Province 353000, China
| | - Xiang Huang
- Department of Urology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317 Zhongshan Road, Yanping District, Nanping City, Fujian Province 353000, China
| | - Zhongyuan Zhang
- Department of Pathology, Nanping First Hospital of Fujian Medical University, No. 317 Zhongshan Road, Yanping District, Nanping City, Fujian Province 353000, China
| | - Kaijun Liao
- Department of Pharmacy, Nanping First Hospital of Fujian Medical University, No. 317 Zhongshan Road, Yanping District, Nanping City, Fujian Province 353000, China
| | - Hao Xiong
- Department of Urology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317 Zhongshan Road, Yanping District, Nanping City, Fujian Province 353000, China
| | - Zhiqiang Feng
- Department of Urology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317 Zhongshan Road, Yanping District, Nanping City, Fujian Province 353000, China
| | - Shihui Mao
- Department of Urology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317 Zhongshan Road, Yanping District, Nanping City, Fujian Province 353000, China
| | - Xu Zhang
- Department of Urology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317 Zhongshan Road, Yanping District, Nanping City, Fujian Province 353000, China
| |
Collapse
|
2
|
Wang Y, Yu M, Lv P, Li R, Wu X, Wu Y. Identification of a novel signature derived from ferroptosis-related genes to predict prognosis, immune landscape and chemotherapeutic sensitivity in head and neck squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102392. [PMID: 40306361 DOI: 10.1016/j.jormas.2025.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/07/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Ferroptosis resistance is increasingly appreciated as an indispensable factor for tumor initiation, progression, and therapeutic resistance in various human malignancies including head and neck squamous cell carcinoma (HNSCC). Herein, we sought to develop a novel signature utilizing ferroptosis-related genes (FRGs) for prognosis and therapeutic prediction in HNSCC. METHODS A prognostic signature specific to HNSCC was developed using univariate Cox regression and LASSO-penalized multivariate Cox regression analyses. A nomogram incorporating this signature and selected clinicopathological factors was created through multivariate Cox regression. The effectiveness of the FRG signature in predicting tumor mutation burden (TMB), immune status, and responses to chemotherapy was also evaluated. RESULTS The FRG signature based on eight genes (AURKA, LPIN1, MIOX, CDKN2A, PRKAA2, CISD2, TRIB3, and ASNS) successfully classified patients into subgroups with distinct outcomes across multiple cohorts. A FRG nomogram was constructed with good-prognostic performance. Additionally, higher FRG signature scores were positively associated with TMB and negatively correlated with tumor-infiltrating immune cells, which were linked to sensitivity to several chemotherapeutic drugs. CONCLUSIONS Our findings provide strong evidence that the FRG-derived signature/nomogram can effectively predict both prognosis and therapeutic response in HNSCC.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu 210029, China
| | - Miao Yu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Jiangsu 210029, China
| | - Pin Lv
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Jiangsu 210029, China
| | - Ruoyuan Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Jiangsu 210029, China
| | - Xiang Wu
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Jiangsu 210029, China.
| | - Yaping Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Jiangsu 210029, China.
| |
Collapse
|
3
|
Khan A, Huo Y, Guo Y, Shi J, Hou Y. Ferroptosis is an effective strategy for cancer therapy. Med Oncol 2024; 41:124. [PMID: 38652406 DOI: 10.1007/s12032-024-02317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 04/25/2024]
Abstract
Ferroptosis is a form of intracellular iron-dependent cell death that differs from necrosis, autophagy and apoptosis. Intracellular iron mediates Fenton reaction resulting in lipid peroxidation production, which in turn promotes cell death. Although cancer cell exhibit's ability to escape ferroptosis by multiple pathways such as SLC7A11, GPX4, induction of ferroptosis could inhibit cancer cell proliferation, migration and invasion. In tumor microenvironment, ferroptosis could affect immune cell (T cells, macrophages etc.) activity, which in turn regulates tumor immune escape. In addition, ferroptosis in cancer cells could activate immune cell activity by antigen processing and presentation. Therefore, ferroptosis could be an effective strategy for cancer therapy such as chemotherapy, radiotherapy, and immunotherapy. In this paper, we reviewed the role of ferroptosis on tumor progression and therapy, which may provide a strategy for cancer treatment.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yu Huo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yilei Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China.
- , Zhenjiang, People's Republic of China.
| |
Collapse
|
4
|
An WX, Gupta R, Zhai K, Wang YR, Xu WH, Cui Y. Current and Potential Roles of Ferroptosis in Bladder Cancer. Curr Med Sci 2024; 44:51-63. [PMID: 38057536 DOI: 10.1007/s11596-023-2814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Ferroptosis, a type of regulated cell death driven by iron-dependent lipid peroxidation, is mainly initiated by extramitochondrial lipid peroxidation due to the accumulation of iron-dependent reactive oxygen species. Ferroptosis is a prevalent and primitive form of cell death. Numerous cellular metabolic processes regulate ferroptosis, including redox homeostasis, iron regulation, mitochondrial activity, amino acid metabolism, lipid metabolism, and various disease-related signaling pathways. Ferroptosis plays a pivotal role in cancer therapy, particularly in the eradication of aggressive malignancies resistant to conventional treatments. Multiple studies have explored the connection between ferroptosis and bladder cancer, focusing on its incidence and treatment outcomes. Several biomolecules and tumor-associated signaling pathways, such as p53, heat shock protein 1, nuclear receptor coactivator 4, RAS-RAF-MEK, phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin, and the Hippo-tafazzin signaling system, exert a moderating influence on ferroptosis in bladder cancer. Ferroptosis inducers, including erastin, artemisinin, conjugated polymer nanoparticles, and quinazolinyl-arylurea derivatives, hold promise for enhancing the effectiveness of conventional anticancer medications in bladder cancer treatment. Combining conventional therapeutic drugs and treatment methods related to ferroptosis offers a promising approach for the treatment of bladder cancer. In this review, we analyze the research on ferroptosis to augment the efficacy of bladder cancer treatment.
Collapse
Affiliation(s)
- Wen-Xin An
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Radheshyam Gupta
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Kun Zhai
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Ya-Ru Wang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Wan-Hai Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Yan Cui
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
5
|
Wu Z, Li X, Gu Z, Xia X, Yang J. Pyrimidine metabolism regulator-mediated molecular subtypes display tumor microenvironmental hallmarks and assist precision treatment in bladder cancer. Front Oncol 2023; 13:1102518. [PMID: 37664033 PMCID: PMC10470057 DOI: 10.3389/fonc.2023.1102518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background Bladder cancer (BLCA) is a common urinary system malignancy with a significant morbidity and death rate worldwide. Non-muscle invasive BLCA accounts for over 75% of all BLCA cases. The imbalance of tumor metabolic pathways is associated with tumor formation and proliferation. Pyrimidine metabolism (PyM) is a complex enzyme network that incorporates nucleoside salvage, de novo nucleotide synthesis, and catalytic pyrimidine degradation. Metabolic reprogramming is linked to clinical prognosis in several types of cancer. However, the role of pyrimidine metabolism Genes (PyMGs) in the BLCA-fighting process remains poorly understood. Methods Predictive PyMGs were quantified in BLCA samples from the TCGA and GEO datasets. TCGA and GEO provided information on stemness indices (mRNAsi), gene mutations, CNV, TMB, and corresponding clinical features. The prediction model was built using Lasso regression. Co-expression analysis was conducted to investigate the relationship between gene expression and PyM. Results PyMGs were overexpressed in the high-risk sample in the absence of other clinical symptoms, demonstrating their predictive potential for BLCA outcome. Immunological and tumor-related pathways were identified in the high-risk group by GSWA. Immune function and m6a gene expression varied significantly between the risk groups. In BLCA patients, DSG1, C6orf15, SOST, SPRR2A, SERPINB7, MYBPH, and KRT1 may participate in the oncology process. Immunological function and m6a gene expression differed significantly between the two groups. The prognostic model, CNVs, single nucleotide polymorphism (SNP), and drug sensitivity all showed significant gene connections. Conclusions BLCA-associated PyMGs are available to provide guidance in the prognostic and immunological setting and give evidence for the formulation of PyM-related molecularly targeted treatments. PyMGs and their interactions with immune cells in BLCA may serve as therapeutic targets.
Collapse
Affiliation(s)
- Zixuan Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaohuan Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenchang Gu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Xie Z, Zhou Q, Qiu C, Zhu D, Li K, Huang H. Inaugurating a novel adjuvant therapy in urological cancers: Ferroptosis. CANCER PATHOGENESIS AND THERAPY 2023; 1:127-140. [PMID: 38328400 PMCID: PMC10846326 DOI: 10.1016/j.cpt.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 02/09/2024]
Abstract
Ferroptosis, a distinctive form of programmed cell death, is involved in numerous diseases with specific characteristics, including certain cell morphology, functions, biochemistry, and genetics, that differ from other forms of programmed cell death, such as apoptosis. Many studies have explored ferroptosis and its associated mechanisms, drugs, and clinical applications in diseases such as kidney injury, stroke, ischemia-reperfusion injury, and prostate cancer. In this review, we summarize the regulatory mechanisms of some ferroptosis inducers, such as enzalutamide and erastin. These are current research focuses and have already been studied extensively. In summary, this review focuses on the use of ferroptosis induction as a therapeutic strategy for treating tumors of the urinary system.
Collapse
Affiliation(s)
- Zhaoxiang Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Cheng Qiu
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China
| |
Collapse
|
7
|
Wang K, Wang G, Li G, Zhang W, Wang Y, Lin X, Han C, Chen H, Shi L, Reheman A, Li J, Li Z, Yang X. m6A writer WTAP targets NRF2 to accelerate bladder cancer malignancy via m6A-dependent ferroptosis regulation. Apoptosis 2023; 28:627-638. [PMID: 36719469 DOI: 10.1007/s10495-023-01817-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 02/01/2023]
Abstract
Recent evidence have indicated that ferroptosis, a novel iron-dependent form of non-apoptotic cell death, plays a critical role in human cancers. Besides, emerging literatures have revealed the ovel function of N6-methyladenosine (m6A) in bladder cancer physiological. However, the underlying mechanism of m6A on bladder cancer is still unclear. Here, present work revealed that m6A methyltransferase ('writer') WTAP up-regulated in bladder cancer tissue and cells, indicating the poor prognosis of bladder cancer patients. Functionally, gain/loss-of-functional experiments illustrated that WTAP promoted the viability of bladder cancer cells and inhibited the erastin-induced ferroptosis. Mechanistically, there was a remarkable m6A modification site on 3'-UTR of endogenous antioxidant factor NRF2 RNA and WTAP could install its methylation. Moreover, m6A reader YTHDF1 recognized the m6A site on NRF2 mRNA and enhanced its mRNA stability. Therefore, these findings demonstrated potential therapeutic strategyies for bladder cancer via m6A-dependent manner.
Collapse
Affiliation(s)
- Ke Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, P. R. China
- Department of Urology, The First People's Hospital of Xianyang, 712000, Xianyang, Shaanxi, P. R. China
| | - Gang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, P. R. China.
| | - Gang Li
- Departartment of Urology, The Third Hospital of Xi'an, 710021, Xi'an, Shaanxi, P. R. China
| | - Wei Zhang
- Shenmu Hospital, 719300, Yulin, Shaanxi, P. R. China
| | - Yarong Wang
- Department of Urology, The First People's Hospital of Xianyang, 712000, Xianyang, Shaanxi, P. R. China
| | - Xiaofeng Lin
- People's Hospital of Wuqi County, 717600, Yan'an, Shaanxi, P. R. China
| | - Chengxian Han
- Department of Urology, The First People's Hospital of Xianyang, 712000, Xianyang, Shaanxi, P. R. China
| | - Hanxuan Chen
- Department of Urology, The First People's Hospital of Xianyang, 712000, Xianyang, Shaanxi, P. R. China
| | - Liang Shi
- Department of Urology, The First People's Hospital of Xianyang, 712000, Xianyang, Shaanxi, P. R. China
| | - Abudoula Reheman
- Department of Urology, The First People's Hospital of Xianyang, 712000, Xianyang, Shaanxi, P. R. China
| | - Jingkai Li
- Department of Urology, The First People's Hospital of Xianyang, 712000, Xianyang, Shaanxi, P. R. China
| | - Zhaomin Li
- Department of Urology, The First People's Hospital of Xianyang, 712000, Xianyang, Shaanxi, P. R. China
| | - Xinxuan Yang
- Department of Urology, The First People's Hospital of Xianyang, 712000, Xianyang, Shaanxi, P. R. China
| |
Collapse
|
8
|
Huang ZM, Wang H, Ji ZG. Bladder cancer tissue-derived exosomes suppress ferroptosis of T24 bladder cancer cells by transporting miR-217. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:39-49. [PMID: 36461670 DOI: 10.1002/em.22520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
It has been reported that miR-217 can inhibit the oncogenic activity and progression of bladder cancer (BCa) cells, but it has not been explored whether miR-217 is involved in the regulation of ferroptosis. In the present study, RNA transfection, real-time PCR, flow cytometry, Western blotting assays, immunofluorescence and ELISA were performed to explore the effects and mechanisms of miR-217 in BCa tissue-derived exosomes. We found that extracellular fluid from bladder cancer tissue promoted the growth and miR-217 expression of T24 cells and inhibited ferroptosis. MiR-217 was confirmed to inhibit ferroptosis in bladder cancer cells by RNA interference and functional assays. By cell membrane fluorescence probe (CM-Dil) labeling, inhibiting exosome secretion by GW4689 and exosome extraction, we determined that BCa tissue-derived exosomes transport miR-217 into T24 cells. Culture of T24 cells with extracellular fluid after RNA interference showed that exosomes carrying miR-217 derived from BCa tissues inhibited ferroptosis of T24 cells. We conclude that bladder cancer tissue-derived exosomes inhibit ferroptosis of T24 bladder cancer cells by transporting miR-217. The results of our study provide a new insight into the progression of bladder cancer.
Collapse
Affiliation(s)
- Zhong-Ming Huang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hai Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhi-Gang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Yu Z, Lu B, Gao H, Liang R. A New Prognostic Signature Constructed with Necroptosis-Related lncRNA in Bladder Cancer. JOURNAL OF ONCOLOGY 2022; 2022:5643496. [PMID: 36425941 PMCID: PMC9681547 DOI: 10.1155/2022/5643496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 08/01/2023]
Abstract
BACKGROUND Bladder cancer (BC) accounts for the most common urologic malignancy, leading to a heavy social burden over the world. We aim to search for a novel prognostic biomarker with necroptosis-related lncRNAs of bladder cancer in this study. METHODS We download the RNA-sequencing data and corresponding clinical information of BC patients from TCGA. We performed Pearson correlation analysis to identify necroptosis-related lncRNAs (NRlncRNAs). Then, we used univariate Cox regression, Lasso Cox analysis, and multivariate Cox regression to construct the optimal prognostic model. Next, we used Kaplan-Meier curves, Cox regression, receiver operating characteristic (ROC) curves, nomogram, and stratified survival analysis to evaluate the capacity of the prognostic signature. Furthermore, gene set enrichments in the signature and the correlation between prognostic signature and necroptosis genes, tumor microenvironment, immune infiltration, and immune checkpoints of BC were also explored. RESULTS A 7-NRlncRNAs signature comprising FKBP14-AS1, AL731567.1, LINC02178, AC011503.2, LINC02195, AC068196.1, and AL136084.2 was constructed to predict the prognosis of BC in this research. Cox regression analysis showed that the signature could be an independent prognostic factor for BC patients (P < 0.001). Compared to other clinicopathological characteristics, this signature displayed a better capacity of prediction with the area under the curve (AUC) of 0.745. Stratified analysis using various clinical variables demonstrated that the prognostic signature has good clinical fitness. GSEA showed that focal adhesion and the WNT signaling pathway were enriched in the high-risk group. Immune infiltration analysis indicated that the signature was significantly inversely correlated with infiltration of CD8+ T cells and CD4+ T cells while positively correlated with macrophages and cancer associated fibroblasts. Immune checkpoint analysis revealed that the expressions of protective factors were significantly lower in the high-risk group, while expressions of cancer promotors were significantly higher in this group. The gene expression analysis displayed that necroptosis genes such as FADD, FAS, MYC, STAT3, PLK1, LEF1, EGFR, RIPK3, CASP8, BRAF, ID1, GATA3, MYCN, CD40, and TNFRSF21 were significantly different between the two groups. CONCLUSIONS The 7-NRlncRNAs signature can predict the overall survival of BC and may provide help for the individualized treatment of BC patients.
Collapse
Affiliation(s)
- Zuhu Yu
- Department of Urology, University of Chinese Academy of Sciences Shenzhen Hospital, Guangming, Shenzhen, China
| | - Bin Lu
- Department of Urology, University of Chinese Academy of Sciences Shenzhen Hospital, Guangming, Shenzhen, China
| | - Hong Gao
- Department of Urology, University of Chinese Academy of Sciences Shenzhen Hospital, Guangming, Shenzhen, China
| | - Rongfang Liang
- Department of Urology, University of Chinese Academy of Sciences Shenzhen Hospital, Guangming, Shenzhen, China
| |
Collapse
|
10
|
Zeng F, Lan Y, Wang N, Huang X, Zhou Q, Wang Y. Ferroptosis: A new therapeutic target for bladder cancer. Front Pharmacol 2022; 13:1043283. [PMID: 36408230 PMCID: PMC9669411 DOI: 10.3389/fphar.2022.1043283] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 12/13/2023] Open
Abstract
Bladder cancer (BC) is the most frequent type of urinary system cancer. The prognosis of BC is poor due to high metastasis rates and multidrug resistance. Hence, development of novel therapies targeting BC cell death is urgently needed. As a novel cell death type with strong antitumor potential, ferroptosis has been investigated by many groups for its potential in BC treatment. As an iron-dependent cell death process, ferroptosis is characterized by excessive oxidative phospholipids. The molecular mechanisms of ferroptosis include iron overload and the system Xc-GSH-GPX4 signaling pathway. A recent study revealed that ferroptosis is involved in the metastasis, treatment, and prognosis of BC. Herein, in this review, we comprehensively summarize the mechanism of ferroptosis, address newly identified targets involved in ferroptosis, and discuss the potential of new clinical therapies targeting ferroptosis in BC.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Yunping Lan
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Ning Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| |
Collapse
|
11
|
Lai G, Zhong X, Liu H, Deng J, Li K, Xie B. A Novel m7G-Related Genes-Based Signature with Prognostic Value and Predictive Ability to Select Patients Responsive to Personalized Treatment Strategies in Bladder Cancer. Cancers (Basel) 2022; 14:5346. [PMID: 36358764 PMCID: PMC9656096 DOI: 10.3390/cancers14215346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2023] Open
Abstract
Although N7-methylguanosine (m7G) modification serves as a tumor promoter in bladder cancer (BLCA), the comprehensive role of m7G-related characterization in BLCA remains unclear. In this study, we systematically evaluated the m7G-related clusters of 760 BLCA patients through consensus unsupervised clustering analysis. Next, we investigated the underlying m7G-related genes among these m7G-related clusters. Univariate Cox and LASSO regressions were used for screening out prognostic genes and for reducing the dimension, respectively. Finally, we developed a novel m7G-related scoring system via the GSVA algorithm. The correlation between tumor microenvironment, prediction of personalized therapies and this m7G-related signature was gradually revealed. We first identified three m7G-related clusters and 1108 differentially expressed genes relevant to the three clusters. Based on the profile of 1108 genes, we divided BLCA patients into two clusters, which were quantified by our established m7G-related scoring system. Patients with higher m7G-related scores tended to have a better OS and more chances to benefit from immunotherapy. A significantly negative connection between sensitivity to classic chemotherapeutic drugs and m7G-related signature was uncovered. In summary, our data show that m7G-related characterization of BLCA patients can be of value for prognostic stratification and for patient-oriented therapeutic options, designing personalized treatment strategies in the preclinical setting.
Collapse
Affiliation(s)
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing 400016, China
| | | | | | | | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing 400016, China
| |
Collapse
|
12
|
Wang S, Wang H, Zhu S, Li F. Systematical analysis of ferroptosis regulators and identification of GCLM as a tumor promotor and immunological biomarker in bladder cancer. Front Oncol 2022; 12:1040892. [PMID: 36353567 PMCID: PMC9638099 DOI: 10.3389/fonc.2022.1040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
Bladder cancer (BCa) is a life-threaten disease with an increasing incidence with age, and immunotherapy has become an important treatment for BCa, while the efficiency of the immune system declines with age. It is vital to reveal the mechanisms of tumor immune microenvironment (TIME) and identify novel immunotherapy targets for BCa. Through analyzing the RNA-seq of TCGA-BLCA cohort, we distinguished two ferroptosis-related BCa clusters, and we discovered that in comparation with cluster 2, the cluster 1 BCa patients showed higher PD-L1 expression, more unfavorable overall survival and higher tumor stage and grade. XCELL analyses showed that higher level of Th2 cell and Myeloid dendritic cell were enriched in cluster 1, while NK T cell was enriched in cluster 2, and TIDE analysis revealed that cluster 2 was more sensitive to immunotherapy than cluster 1. GSEA analysis implied that Toll-like signaling pathway and JAK_STAT signaling pathway were significantly enriched in cluster 1. Subsequently, through performing bioinformatic analysis and cell experiments, we demonstrated that GCLM is overexpressed in BCa and indicates dismal prognosis, and knockdown of GCLM can significantly suppress the colony formation ability of BCa cells. Furthermore, we also found that GCLM might be correlated with immune infiltration in BCa, and can serve as a tumor promotor and immunological biomarker in BCa, our research showed the vital roles of ferroptosis regulators in TIME of BCa, and GCLM is a latent therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Song Wang
- Department of Urology, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - He Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shaoxing Zhu
- Department of Urology, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Fangyin Li
- Department of Urology, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- *Correspondence: Fangyin Li,
| |
Collapse
|
13
|
Seven Fatty Acid Metabolism-Related Genes as Potential Biomarkers for Predicting the Prognosis and Immunotherapy Responses in Patients with Esophageal Cancer. Vaccines (Basel) 2022; 10:vaccines10101721. [PMID: 36298586 PMCID: PMC9610070 DOI: 10.3390/vaccines10101721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Esophageal cancer (ESCA) is a major cause of cancer-related mortality worldwide. Altered fatty acid metabolism is a hallmark of cancer. However, studies on the roles of fatty acid metabolism-related genes (FRGs) in ESCA remain limited. Method: We identified differentially expressed FRGs (DE-FRGs). Then, the DE-FRGs prognostic model was constructed and validated using a comprehensive analysis. Moreover, the correlation between the risk model and clinical characteristics was investigated. A nomogram for predicting survival was established and evaluated. Subsequently, the difference in tumor microenvironment (TME) was compared between two risk groups. The sensitivity of key DE-FRGs to chemotherapeutic interventions and their correlation with immune cells were investigated. Finally, DEGs between two risk groups were measured and the prognostic value of key DE-FRGs in ESCA was confirmed in other databases. Results: A prognostic model was constructed based on seven selected DEG-FRGs. TNM staging and CD8+ T cells were significantly correlated with high-risk groups. Low-risk groups exhibited more infiltrated M0 macrophages, an activation of type II interferon (IFN-γ) responses, and were found to be more suitable for immunotherapy. Seven key DE-FRGs with prognostic value were found to be considerably influenced by different chemotherapy drugs. Conclusion: A prognostic model based on seven DE-FRGs may efficiently predict patient prognosis and immunotherapy response, helping to develop individualized treatment strategies in ESCA.
Collapse
|
14
|
Zhu Z, Zhao Q, Song W, Weng J, Li S, Guo T, Zhu C, Xu Y. A novel cuproptosis-related molecular pattern and its tumor microenvironment characterization in colorectal cancer. Front Immunol 2022; 13:940774. [PMID: 36248908 PMCID: PMC9561547 DOI: 10.3389/fimmu.2022.940774] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cuproptosis, or copper-induced cell death, has been reported as a novel noncanonical form of cell death in recent times. However, the potential roles of cuproptosis in the alteration of tumor clinicopathological features and the formation of a tumor microenvironment (TME) remain unclear. In this study, we comprehensively analyzed the cuproptosis-related molecular patterns of 1,274 colorectal cancer samples based on 16 cuproptosis regulators. The consensus clustering algorithm was conducted to identify cuproptosis-related molecular patterns and gene signatures. The ssGSEA and ESTIMATE algorithms were used to evaluate the enrichment levels of the infiltrated immune cells and tumor immune scores, respectively. The cuproptosis score was established to assess the cuproptosis patterns of individuals with principal component analysis algorithms based on the expression of cuproptosis-related genes. Three distinct cuproptosis patterns were confirmed and demonstrated to be associated with distinguishable biological processes and clinical prognosis. Interestingly, the three cuproptosis patterns were revealed to be consistent with three immune infiltration characterizations: immune-desert, immune-inflamed, and immune-excluded. Enhanced survival, activation of immune cells, and high tumor purity were presented in patients with low cuproptosisScore, implicating the immune-inflamed phenotype. In addition, low scores were linked to high tumor mutation burden, MSI-H and high CTLA4 expression, showing a higher immune cell proportion score (IPS). Taken together, our study revealed a novel cuproptosis-related molecular pattern associated with the TME phenotype. The formation of cuproptosisScore will further strengthen our understanding of the TME feature and instruct a more personalized immunotherapy schedule in colorectal cancer.
Collapse
Affiliation(s)
- Zhonglin Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Song
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shanbao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianan Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Congcong Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Ye Xu,
| |
Collapse
|
15
|
Li H, Zu X, Hu J, Xiao Z, Cai Z, Gao N, Chen J. Cuproptosis depicts tumor microenvironment phenotypes and predicts precision immunotherapy and prognosis in bladder carcinoma. Front Immunol 2022; 13:964393. [PMID: 36211344 PMCID: PMC9540537 DOI: 10.3389/fimmu.2022.964393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Though immune checkpoint inhibitors (ICIs) exhibit durable efficacy in bladder carcinomas (BLCAs), there are still a large portion of patients insensitive to ICIs treatment. METHODS We systematically evaluated the cuproptosis patterns in BLCA patients based on 46 cuproptosis related genes and correlated these cuproptosis patterns with tumor microenvironment (TME) phenotypes and immunotherapy efficacies. Then, for individual patient's evaluation, we constructed a cuproptosis risk score (CRS) for prognosis and a cuproptosis signature for precise TME phenotypes and immunotherapy efficacies predicting. RESULTS Two distinct cuproptosis patterns were generated. These two patterns were consistent with inflamed and noninflamed TME phenotypes and had potential role for predicting immunotherapy efficacies. We constructed a CRS for predicting individual patient's prognosis with high accuracy in TCGA-BLCA. Importantly, this CRS could be well validated in external cohorts including GSE32894 and GSE13507. Then, we developed a cuproptosis signature and found it was significantly negative correlated with tumor-infiltrating lymphocytes (TILs) both in TCGA-BLCA and Xiangya cohorts. Moreover, we revealed that patients in the high cuproptosis signature group represented a noninflamed TME phenotype on the single cell level. As expected, patients in the high cuproptosis signature group showed less sensitive to immunotherapy. Finally, we found that the high and low cuproptosis signature groups were consistent with luminal and basal subtypes of BLCA respectively, which validated the role of signature in TME in terms of molecular subtypes. CONCLUSIONS Cuproptosis patterns depict different TME phenotypes in BLCA. Our CRS and cuproptosis signature have potential role for predicting prognosis and immunotherapy efficacy, which might guide precise medicine.
Collapse
Affiliation(s)
- Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyong Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Xiangya Boai Hospital, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Cheng Z, Wang J, Xu Y, Jiang T, Xue Z, Li S, Zhao Y, Song H, Song J. N7-methylguanosine-related lncRNAs: Distinction between hot and cold tumors and construction of predictive models in colon adenocarcinoma. Front Oncol 2022; 12:951452. [PMID: 36185235 PMCID: PMC9520617 DOI: 10.3389/fonc.2022.951452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Colon adenocarcinoma (COAD) is a prevalent malignant tumor that severely threatens human health across the globe. Immunotherapy is an essential need for patients with COAD. N7-methylguanosine (m7G) has been associated with human diseases, and non-coding RNAs (lncRNAs) regulate various tumor-related biological processes. Nonetheless, the m7G-related lncRNAs involved in COAD regulation are limited. This study aims to construct the clustering features and prognostic model of m7G-related lncRNAs in COAD. First, The Cancer Genome Atlas (TCGA) database was used to identify m7G-related differentially expressed lncRNAs (DELs), based on which COAD cases could be classified into two subtypes. Subsequently, univariate Cox analysis was used to identify 9 prognostic m7G-related lncRNAs. Further, Five candidates were screened by LASSO-Cox regression to develop new models. The patients were divided into high-risk and low-risk groups based on the median risk score. Consequently, the Kaplan-Meier survival curve demonstrated a statistically significant overall survival (OS) between the high- and low-risk groups (P<0.001). Multivariate Cox regression analysis revealed that risk score is an independent prognostic factor in COAD patients (P<0.001). This confirms the clinical applicability of the model. Additionally, we performed Gene Set Enrichment Analysis (GSEA), which uncovered the biological and functional differences between risk subgroups, i.e., enrichment of immune-related diseases in the high-risk group and enrichment of metabolic-related pathways in the low-risk group. In a drug sensitivity analysis, high-risk group were more sensitive to some chemotherapeutics and targeted drugs than low-risk group. Eventually, the stability of the model was confirmed by qRT-PCR. Our study unraveled the features of different immune states of COAD and established a prognostic model, including five m7G-related lncRNAs for COAD patients. These results will bolster clinical treatment and survival prediction of COAD.
Collapse
Affiliation(s)
- Zhichao Cheng
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaqi Wang
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenyu Xue
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuai Li
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Zhao
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Jun Song, ; Hu Song,
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Jun Song, ; Hu Song,
| |
Collapse
|
17
|
Tu Y, Ding X, Mao Z. Identification and verification of the pyroptosis-related prognostic signature and its associated regulatory axis in bladder cancer. Front Cell Dev Biol 2022; 10:912008. [PMID: 36120583 PMCID: PMC9470881 DOI: 10.3389/fcell.2022.912008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Pyroptosis is an inflammatory form of cell death triggered by certain inflammasomes. Accumulating studies have shown the involvement of pyroptosis in the proliferation, invasion, and metastasis and prognosis of cancer. The prognostic value of pyroptosis-related genes (PRGs) and their association with immune infiltration in bladder cancer have not yet been elucidated. Methods: We performed a comprehensive analysis of the prognostic value and immune infiltrates of PRGs in bladder cancer using the TCGA dataset. qRT-PCR was also performed to verify our result. Results: Among 33 PRGs, 14 PRGs were upregulated or downregulated in bladder cancer tissue versus normal tissue. We also summarized copy number variations and somatic mutations of PRGs in bladder cancer. By using consensus clustering analysis of PRGs with prognostic significance, we divided the bladder cancer cohort into two subtypes significantly by different prognosis and immune infiltration. Using the LASSO Cox regression analysis, a prognostic signature including six PRGs was constructed for bladder cancer and the patients could be classified into a low- or high-risk group. Interestingly, this prognostic signature had a favorable performance for predicting the prognosis of bladder cancer patients. Moreover, further analysis demonstrated a significant difference in gender, tumor grade, clinical stage, TNM stage, immunoScore, and immune cell infiltration between the high- and low-risk groups in bladder cancer. We also identified an lncRNA SNHG14/miR-20a-5p/CASP8 regulatory axis in bladder cancer by constructing a ceRNA network. Conclusion: We identified a PRG-associated prognostic signature associated with the prognosis and immune infiltrates for bladder cancer and targeting pyroptosis may be an alternative approach for therapy. Further vivo and vitro experiments are necessary to verify these results.
Collapse
Affiliation(s)
- Yaofen Tu
- Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodi Ding
- Department of Rehabilitation, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zujie Mao
- Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Zujie Mao,
| |
Collapse
|
18
|
Li H, Xu B, Du J, Wu Y, Shao F, Gao Y, Zhang P, Zhou J, Tong X, Wang Y, Li Y. Autophagy-related prognostic signature characterizes tumor microenvironment and predicts response to ferroptosis in gastric cancer. Front Oncol 2022; 12:959337. [PMID: 36052243 PMCID: PMC9424910 DOI: 10.3389/fonc.2022.959337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/20/2022] [Indexed: 12/26/2022] Open
Abstract
Background Gastric cancer (GC) is an important disease and the fifth most common malignancy worldwide. Autophagy is an important process for the turnover of intracellular substances. Autophagy-related genes (ARGs) are crucial in cancer. Accumulating evidence indicates the clinicopathological significance of the tumor microenvironment (TME) in predicting prognosis and treatment efficacy. Methods Clinical and gene expression data of GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. A total of 22 genes with differences in expression and prognosis were screened from 232 ARGs. Three autophagy patterns were identified using an unsupervised clustering algorithm and scored using principal component analysis to predict the value of autophagy in the prognosis of GC patients. Finally, the relationship between autophagy and ferroptosis was validated in gastric cancer cells. Results The expression of ARGs showed obvious heterogeneity in GC patients. Three autophagy patterns were identified and used to predict the overall survival of GC patients. These three patterns were well-matched with the immunophenotype. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses showed that the biological functions of the three autophagy patterns were different. A scoring system was then set up to quantify the autophagy model and further evaluate the response of the patients to the immunotherapy. Patients with high autophagy scores had a more severe tumor mutation burden and better prognosis. High autophagy scores were accompanied by high microsatellite instability. Patients with high autophagy scores had significantly higher PD-L1 expression and increased survival. The experimental results confirmed that the expression of ferroptosis genes was positively correlated with the expression of autophagy genes in different autophagy clusters, and inhibition of autophagy dramatically reversed the decrease in ferroptotic cell death and lipid accumulation. Conclusions Autophagy patterns are involved in TME diversity and complexity. Autophagy score can be used as an independent prognostic biomarker in GC patients and to predict the effect of immunotherapy and ferroptosis-based therapy. This might benefit individualized treatment for GC.
Collapse
Affiliation(s)
- Haoran Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Bing Xu
- Department of Clinical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Fangchun Shao
- Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Wang G, Zhao M, Li J, Li G, Zheng F, Xu G, Hong X. m7G-Associated subtypes, tumor microenvironment, and validation of prognostic signature in lung adenocarcinoma. Front Genet 2022; 13:954840. [PMID: 36046251 PMCID: PMC9422053 DOI: 10.3389/fgene.2022.954840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background: 7-Methylguanosine (m7G) is an important posttranscriptional modification that regulates gene expression and is involved in tumorigenesis and development. Tumor microenvironment has been proven to be highly involved in tumor progression and prognosis. However, how m7G-associated genes affect the tumor microenvironment of patients with lung adenocarcinoma (LUAD) remains to be further clarified. Methods: The genetic alterations of m7G-associated genes and their associations with the prognosis and tumor microenvironment in LUAD patients were systemically analyzed. An m7G-Riskscore was established and analyzed for its performance in disease prognosis and association with patient response to immunotherapy. Expression of the model genes at the protein level was investigated through ex vivo experiments. A nomogram was finally obtained based on the m7G-Riskscore and several significant clinical pathological features. Results: m7G-Associated genes were obtained from five LUAD datasets from The Cancer Genome Atlas and Gene Expression Omnibus databases, and their expression pattern was determined. Based on the m7G-associated genes, three LUAD clusters were defined. The differentially expressed genes from the three clusters were screened and used to further divide the LUAD patients into two gene clusters. It was demonstrated that the alterations of m7G-associated genes were associated with the clinical pathological features, prognosis, and tumor immune infiltration in LUAD patients. An m7G-Riskscore including CAND1, RRM2, and SLC2A1 was obtained with robust and accurate prognostic performance. WB and cell immunofluorescence also showed significant dysregulation of CAND1, RRM2, and SLC2A1 in LUAD. In addition, a nomogram was established to improve the clinical feasibility of the m7G-Riskscore. Correlation analysis revealed that patients with a lower m7G-Riskscore had higher immune and stromal scores, responded well to chemotherapeutics and multiple targeted drugs, and survived longer. Patients with a higher m7G-Riskscore tended to suffer from a higher tumor mutation burden. Furthermore, the m7G-Riskscore exhibited significant associations with immune cell infiltration and cancer stemness. Conclusion: This study systemically analyzed m7G-associated genes and identified their potential role in tumor microenvironment and prognosis in patients with LUAD. The findings of the present study may help better understand LUAD from the m7G perspective and also provide a new thought toward the prognosis and treatment of LUAD.
Collapse
Affiliation(s)
- Guangyao Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Mei Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jiao Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Guosheng Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Fukui Zheng
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Guanglan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Guanglan Xu, ; Xiaohua Hong,
| | - Xiaohua Hong
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Guanglan Xu, ; Xiaohua Hong,
| |
Collapse
|